e

TEXAS INSTRUMENTS
PROGRAMMABLE

| 1 | | | T
I ! _ M SR = L8 ES AR SR 1 0 o o o I i1 18 |
A | [| D e | _I__._l_.l 11171 f | . I
.| " I T D 51 E e R - 3 Aoy 4 £ L 3 -1 B3 |
| 1 : | i IS | | : i T 1 | I
: L - B e e ——— 1 e It B R - - '
l {1} g F-i] | |
I I —. - e p—— [e e - e -] | _. - - . - ¥ i - ¥ - -
] | | | | | i ol] R B A
+; 1 | - - —3-F Ny & 11 -1 P e —— e o - .
| 1 {
b e — | S [l [EY 8 | ! I el EL | s e
- I i | R ER —d———— .} I SO .. |- -
T T T 1 e
_.__'_I_ ' | |] d IS i B8 3L o e = % .
L | i ! E '
| 1.] 174 |
-1 -4 R 2 e e s st LUL 3 | L O | S Y G
1 | | | = o ol S i B | __l__ |
F RN LR FEEE T | |
|- IS BT WA TR S SRS SO S A f—— 4L L 11
ANENNNE RN , 25 i o I ESEENEEAE NEE RS . 1T
——— —4q t | L S | B S — | e
— b1 = 1 1 —t L L 1 — =
| | | | BN Ay
| = 1 3 & 1 R L 8- % | 3 3 F —1 5 1 4 = | S [N i
: ! | 41 “ &l i -
O T T T
|
| | | -
1 | |]
= ¥ =2 B b= | . B
i = B '] 2= s S
- | g g | - +
- i SHI e BT A 1— d] T 48 |] | 1 3 1 JLofh
i ol B0 | ol R
S S | - B o il L T
---------- - e 32 ! & L }
N . ! P '
1 | G |
o [i S e . | - = W B & 4 -1 m———
| | B | ! l
| = = |
| 1 :
' P m———— is - . P - 5 ki T b (B R
1 bRl | - | | R el
3 X 3 o P . i
- = -4 L i S K
iy B BN S \ 1 e | IS Il S M L
& 3§ =—r 1 3 =X =
i g ([A 1 e
| T 1= T 11
I_I__. N e . H o -] L T A
o
o B (L T i i W £ | aft 4 E| = e o
Lt | Bl Y | I = AL a il KN e B
=S i S B w15 b | I S . A e e = =4 e
| | 1 1 | 58 =
L4 R N RN —+ | 1 . | ¥ - %
: I . S -
o - { § E T E—_ -
e Al B L A 2 4 4 1 L
|

TEXAS INSTRUMENTS

Manuals
developed by:

With
contributions
by:

174

PROGRAMMING
REFERENCE
GUIDE

The staff of Texas Instruments Instructional
Communications

Jacquelyn F. Quiram
Kenneth E. Heichelheim
Mike Keller

Brenda Cornitius

Chris M. Alley

Bruno Didier

Robert A. Pollan
Stephen L. Reid
Floyd R. Gerwig
Robert E. Whitsitt, Il

Copyright © 1985, 1986, 1990 by Texas Instruments Incorporated.

_——— e
Chapter 1: - General Programming Information P 1-2
Overview of BASIC Assigning Valuesto Variables 1-4
Displaying Information. 1-5
Numeric Operations 16
StringOperations 1.9
AITays 1-11
Relational and Logical Operators [+12
Control Statements. 1-14
Subroutines and Subprograms 115
ErrorHandling 1-16
Storing and Retrieving Prograras 117
Storing and Retrieving DataFiles 1-18
Sending InformationtoaPrinter 1-19
Chapter 2: Conventionsin this Chapter 22
Reference Section Alphabetical reference section 2:3—2.133
Chapter 3: Guidelines for Selecting Equipment 32
Using Optional Caring for Your Equipment 33
Accessories Connecting Your Recorderto the TI-74 34
Prompts for Using the Cassette Recorder 3:5
Determining the Recorder Settings 36
Guidelines for Good Recording 3+10
Procedure for Saving Programs 3+12
Verifying Program Storage and Retrieval 3-13
Procedure for Retrieving Programs. 3+14
Setting Up a Sample Program and DataFile, 3-16
If You Have Recording Difficulties 3.18
Controlling the Printer FromBASIC 3-19
Accessing Cartridge Memory 3+23
Appendices Appendix A: Reserved Word List = A2
Appendix B: ASCH CharacterCodes A4
Appendix C: Logical Operations A-1l
Appendix D: ErrorMessages A-16
Appendix E: Numeric Accuracy A-32
Appendix F: Differences Between TI-74 BASIC and Others . . A-34
AppendixG:Index A-37
i

Table of Contents

,

This guldebook contains information about the BASIC
programming language of the Texas Instruments TI-74
BASICALC™ calculator. You can find operating instructions in
the TI-74 User’s Guide.

Chapter 1: Overview of BASIC

“

Use this chapter if you know the type of operation you want to
perform but do not know the keyword. After you locate the
keywords that apply to that type of operation, refer to Chapter 2
for a detailed description of each keyword and an example of how
to use it.

.

Table of
Contents

General Programming Information 1.2
Assigning Valuesto Variables 1-4
Displaying Information. 1-5
NumericOperations 1-6
StringOperations 1-9
ATTAYS 1-11
Relational and Logical Operators | 1-12
Control Statements. 1-14
Subroutines and Subprograms 1-15
ErrorHandling 1-16
Storing and Retrieving Programs 1-17
Storing and Retrieving DataFiles 1-18
Sending InformationtoaPrinter 1-19
Overview of BASIC 1.1

General Programming Information

Mr

This section briefly describes some of the conventions and
features of TI-74 BASIC.

Line Numbers

Duplicating a
Program Line

Multiple-
Statement
Lines

-2 Overview of BASIC

L T

Each program line must begin with a line number. The line
number must be an integer in the range of 1 to 32766. The
following keywords enable you to generate new line
numbers and to change existing ones.

NUM Automatically generates program line
numbers as you enter a program.

REN Renumbers the lines of a program.

You can duplicate a program line by recalling an existing
line and typing a new line number in place of the old
number. This creates a new line without affecting the

original line,

In general, you can include more than one statement ina
program line. The statements must be separated by a colon.

100 X=3:PRINT X:PAUSE
The following restrictions apply to muitiple-statement lines.

* You cannot use an IMAGE or DATA statement in a
multiple-statement line.

» If you use the SUB statement in a multiple-statement
line, it must be the first statement in the line.

» If you use a remark in a multiple-staternent line, it must
be the last statement in the line.

> If you use a DIM statement in a multiple-statement line,
it must be the last statement in the line. (You can use
only one DIM statement in a line.)

m——_—_

Remarks

Memory
Management

You can document your programs by using remark
statements. A remark is a reminder for the programmer and

1s ignored by the computer during program execution.

REM Signifies that the rest of a program lineisa
remark.

! Can be substituted for the REM keyword.

T1-74 BASIC contains two keywords that help you manage
memory space.

ADDMEM Appends the memory in a RAM cartridge
to the built-in memory of the TI-74,
(Because this is a built-in subprogram, use
CALL ADDMEM.)

FRE Indicates the total amount of memory

available for program and data storage, or
reports the amount of memory used by the

current program.

Overview of BASIC 1.3

Assigning Values to Variables

You can assign values to variables from data either contained

within the
Emm:;uﬂm'I'-"I:'"élI'EII'I'I or entered from the keyboard during program

Variable Names A valid variable hame must follow the rules listed below.

> A variable name can have as many as 15 characters.

READ ASSlgns values to variables by sequentially
reading values from DATA lists.
DATA Pm_vides a list of values to be assigned to
variables by READ statements.
RESTORE Determines which D
ATA stat '
o n ement will be
Data Entered The followi
| wing statements suspend '
Froe ! Pe€Nd program execution and
Korbone nable you to enter data from the keyboard.
INPUT Waits for you to enter one Or more values,
INPUT can display a prompt.
LINPUT Waits for you to enter g string value.
LIPJPU"I‘ accepts your entry exactly as
typed, mclud.lpg commas and quotes.
LINPUT can display a prompt.
ACCEPT Waits for you to enter a value. ACCEPT
h:a}s several options that are not available
with INPUT or LINPUT. |
1-4 Overview of BASIC

Displaying Information

The keywords in this section enable you place information in the
display.

Unformatted The following keywords enable you to display numeric and
Display string values.

PRINT Displays a constant, the value of a
variable, or the result of an expression.
{You normally use a PAUSE following the
PRINT statement.)

DISPLAY Similar to PRINT, except that DISPLAY
has several options that make it more
versatile than PRINT. (You normally use a
PAUSE following the DISPLAY
statement.)

PAUSE Suspends program execution for a
specified period of time to allow you to
view the information in the display.
Without PAUSE, results are displayed too
quickly to be viewed.

INPUT and LINPUT also allow you to display a prompt or

message related to the desired input.

Formatted You can use several options with PRINT and DISPLAY to
Display control the way information is displayed.

USING Defines a format string for displayed
information or references a format string
contained in a separate IMAGE statement.

IMAGE Allows a format string to be placed on a
separate line so that it can be referenced
by more than one PRINT USING or

DISPLAY USING statement.
TAB Positions information at a specified column
in the display.
Overview of BASIC 1.5

Numeric Operations

TI1-74 BASIC includes a wide variety of mathematical operators
and functions.

Arithmetic
Operators

Hierarchy of
Operators

You can use the following operators in a numeric
expression,

A+B Adds A and B.

A-B sSubtracts B from A.

A*B Multiplies A and B.

A/B Divides A by- B.

A~B Raises A to the power of B.

+ and — can also be used as unary operators to indicate
positive or negative values, such as +4 or — 8.

The TI-74 also has relational and logical operators that let

You compare two numeric expressions. For information on
these operators, refer to page 1-12.

The foliowing list shows the order in which arithmetic
operations are performed.

unary +, unary —

*,f.
+, —

An expressinn enclosed in parentheses is given priority over
operations outside the parentheses.

1.6 Overview of BASIC

Trig Functions

Hyperbolic
Functions

The following keywords select an angle setting for
trigonometric calculations. All angies are interpreted

according to the current setting.

DEG Selects the degree setting.
RAD Selects the radian setting.
GRAD Selects the grad setting.

Always begin trig calculations by selecting the appropriate
angle setting. You can then use the following trig functions.

ACOS Computes the arccosine of a number.
ASIN Computes the arcsine of a number.
ATN Computes the arctangent of a number.
COS Computes the cosine of an angle.

SIN Computes the sine of an angle.

TAN Computes the tangent of an angle.

TI-74 BASIC includes the following hyperbolic functions.

ACOSH Computes a hyperbolic arccosine.
ASINH Computes a hyperbolic arcsine.
ATANH Computes a hyperbolic arctangent.
COSH Computes a hyperbolic cosine.
SINH Computes a hyperbolic sine.
TANH Computes a hyperbolic tangent.

Overview of BASIC 1.7

Numeric Operations (Continued) String Operations
| e s

The computer’s string operations enable you to include prompts
and messages in your programs and to write programs that

process string information.

_ _ —_— _ e e -
Other Numeric Othe ' i : :
Functions belﬁ;-nmnenc functions available in TI-74 BASIC are listed String Constants When you type a string constant, enclose it in quotation
marks. The quotation marks identify the string, but they are
ABS Combu not considered part of the string. If you want to include a
putes absolute value. quotation mark within a string, type a pair of consecutive
EXP Computes e raised to a power. quOtes.
INT Returns the integer portion of a number. String Typed String Displayed
LN Com '
putes natural logarithm. "Quote Test” Quote Test
LOG Computes common logarithm. "Quote” "Test” Quote’Test
PI Returns the value of pias 3.141592654. renQuote”"""Test”"" "Quote” "Test”
RANDOMIZE Ensu;gls that a random number is
unpredi ‘ ;
va]lsl . (secet?i?ﬁrrfhseettr;]ﬁ a random starting To enter a null (empty) string, type the open and close
qenerator om number quotation marks with no characters between them.
RND Returns a random numbe Concatenating The concatenation operator (&) combines two strings into a
. Strings single string. The resulting string cannot have more than
SGN Tests a number to see if it is positive, 2heh =
negative, .
ga Or Zero The following program segrent shows an example of string
SQR Comput concatenation. (Notice that the first character of STRINGZ2$
putes square root. is a blank space, so that the concatenated string is properly

spaced.)

100 STRING1$="THIS IS A”
110 STRING2$ =" CONCATENATED STRING”

120 STRING3$ = STRING1$ & STRING2$
130 PRINT STRING3$:PAUSE

The program segment displays:

THIS IS A CONCATENATED STRING

The TI-74 also has relational and logical operators that let
you compare two string expressions. For information on

these operators, refer to page 1-12.

Overview of BASIC 1.9

1.8 Overview of BASIC

String Operations (Continued)

m

: String The following stri '
. _ ring functions operat]
i ; Functions expression and retun a numeﬂffraluee Fm #sine
ASC Qﬂnverts the fn*st character of a string to
Its correspending ASCII character code.
N .
UMERIC Tes_ts a string expression to see if itis a
valid representation of a numeric value.
VAL Returns the numeric value of a string
expression.
LEN Calculates the length of a string.
POS Searc)
> Subsl:;s;z strmg for the first occurrence of

The following string functi
. ctions operate on a i
expression and return a string value. HHmene

| CHRS$ Converts an ASCII character code to its
corresponding display character.
STR$ Converts a number into a string.

The following string functi
. ctions operate on a string
expression and return a string valze. t

RPT#$ Crgates a string by repeating a starting
string a specified number of times.

SEG$ Returns a substring of a string.

110 Overview of BASIC

Arrays

e

Ti-74 BASIC allows one-, two-, and three-dimensional amays.

_——————___.__—_______———————_—_—

Defining the Size
of an Array

An array requires space in memory. You can define an array
with the DIM statement, or you can accept the default

provided by the TI-74.

DIM Defines the number of dimensions and the
number of elements in each dimension of

an array.

If you refer to an array that has not been defined by a DIM
statement, the TI-74 automatically sets an array size of 11
elements (numbered 0 through 10) for each dimension in

the array.

For example, if you use the f ollowing statement without
first dimensioning the array SOMENAME, the array
defaults to two dimensions with each dimension having

space for eleven elements.

SOMENAME(0,0) =123

If your program references an array element outside the
range established for the array, the TI-74 returns an error
message. [f you enter a non-integer as a subscript, the TI-74
rounds the number. If you enter a negative integer as a
subscript, the TI-74 returns an error message.

Overview of BASIC 1.11

e, e eeeeeeeeeeeen
' Relational and Logical Operators
-1 — e ————————— e e

A relational expression compares two numeric or string values
and then checks to see if a specified relationship s true or false.
A logical expression connects two relational expressions.

| N S
] -

The following table shows examples using the four logical

l Relational The following table shows the six relational operators. In Logical OPErators.
| Operators each example, the operator compares the values of A and B, Operators

which represent either numeric or string expressions.
. A ANDB True only if both A and B are true.

A<B True if A is less than B. AORB True if either A or Bis true, or if both A and

]! | B are true.
A<=B Trueif Aisless than or equal to B.

AXORB True if either A or B is true, but false if both
A>B True if A is greater than B. True f cither A

A>=B Trueif A is greater than or equal to B. NOT A True only if A is false.

it | A=B True if A is equal to B. d ulate

* . to marupul
[; The] calnperatorscana]sobeuse _ :
' ‘ A<>B True if A is not equal to B. . cﬁ '.:’E:l al bits of a numeric value. For more information,

Al - refer to Appendix C.

. Note: In most programs, it is important only that a condition
| . Is true or false. However, some programs can take

' | advantage of the fact that a relational expression evaluates

to — 1 if the condition is true or 0 if the condition is false.

String When a relational expression compares two string values,
Comparisons the TI-74 takes one character at a time from each string and

compares their ASCII codes. Leading and trailing blanks are
4 included in the comparison. (For a list of ASCII codes, refer
i to Appendix B.)

> If the ASCII codes differ, the string with the lower code
is less than the string with the higher code.

» If all the ASCII codes are the same and both strings are
the same length, the strings are equal.

| > If one of the strings is longer, the comparison is

I performed for as many characters as there are in the
| shorter string. If all the ASCII codes are the same, the
T longer string is considered greater.

: > The null string (” "} is less than every other string.
| | Overview of BASIC 113

112 Qverview of BASIC

Unconditional
Branching

Conditional
Branching

Looping

Control Statements
%

Control st:at:;nmants enable you to alter the order in which |
program s ents are executed. Control statements can result
in unconditional branching, conditional branching, or looping.

An unconditional branching statement always tranfers
control to a specified line number.

GOTO Transfers control to one and only one

specified line number.

A conditional branching statement enables a program to

select one of several alternative paths. de nding 1
conditions within the program. paT depe or cerain

IF/THEN/ELSE Uses relational and logical operators to test
a condition in the program and determine

which statements to execute.

ON GOTO Transfers control to one of several line
numbers, depending on the value of g
numeric expression.

ON GOSUB Transfers control to one of several

subroutines, depending on the valie of a
numeric expression.

A FOR;I(‘;T L XT ::Jp repeats the statements in the loop a
specified number of times. The following ke
you to set up a FOR/NEXT loop. ywords enable

FOR/TO/STEP Marks the beginning of a FOR/NEXT loop.

NEXT Marks the end of a FOR/NEXT loop. When

the NEXT statement is executed, control
returns to the statement immediately

following the FOR/TQO/STEP statement.

1.14 Overview of BASIC

Subroutines and Subprograms

Using a
Subroutine

Using a
Subprogram

Built-In
Subprograms

As your programs become more complicated, you may need to
use the same group of lines at several different places. Instead of
duplicating the lines at each place, it is more convenient to enter
them as a subroutine or a subprogram. A program can access a
subroutine or a subprogram from any place within the program.

The following keywords enable you to use subroutines.

Transfers control from the main program
to a subroutine that begins at a specified
line number.

GOSUB

Transfers control to one of several
subroutines, based on the value of a
numeric expression.

ON GOSUB

Marks the end of the subroutine, and
transfers control back to the statement
that follows the GOSUB or ON GOSUB

statement.

RETURN

It is common practice to place subroutines after the main
sequence of a program. However, it is invalid to place
subroutines after the END statement.

The following keywords enable you to define and access a
subprogram.

CAILL Transfers control from the main program
to a specified subprogram name.

SUB Labels the beginning of a subprogram.

SUBEND Marks the end of a subprogram.

SUBEXIT Terminates the execution of a subprogram.

This statement is used when you want to
exit the subprogram before the SUBEND

statement.

A subprogram must be placed after the last statement in the
mailn program.

The TI-74 has six built-in subprograms—ADDMEM, ERR,
GET, 10, KEY, and PUT. To access these subprograimns,
remember to use the CALL statement. For example, use
CALL ADDMEM to access the ADDMEM subprogram.

Overview of BASIC 1.15

Error Handling

The T1-74 has several statements that help you locate errors in
the program. Some statements help you debug the program, and
other statements enable you to trap any emors that may occur

- during program execution.

Debugging a
Program

Handling Emrors
and Wamings

When debugging a program, you can use the following
keywords to interrupt program execution so you can test
the value of variables in the program.

BREAK Sets breakpoints within a program.

Note: You can also press the [IBREAK] key
to interrupt program execution.

CON Continues program execution following a
breakpoint.
ON BREAK Enables you to select the action taken

when a breakpoint occurs.
UNBREAK

Removes the breakpoints set with the
BREAK statement.

By processing errors and warnings, a program can often
correct problems before they interfere with program
eXecution.

ON ERROR Enables you to determine the action taken

when an error occurs during program
execution.

ON WARNING Enables you to determine the action taken

when a warning occurs during program
execution.

116 Overview of BASIC

Storing and Retrieving Programs

Storing a

~ Program

Retrieving a
Program

You may want to save a copy of your program for future use by
storing it on an extemal device such as a cassetie playerirecorder
or a RAM cartridge. After It is stored, you can easily retrieve the
program at any time and reload it Into the TI-74. (For detailed
information on using cassette tapes, refer to Chapter 3 in this
book.)

The following keywords enable you to store a copy of the
program that is currently in the TI-74’s memory.
FORMAT Initializes the storage medium on an
external device. (Cassette tapes do not
need to be formatted.)

Caution; If a medium that already
contains stored programs is reformatted,
those programs are erased.

SAVE Copies the program to an external storage
device, such as a cassette recorder.

Checks the copy stored on the external
device to make sure that it was copied

correctly.

<
%

PUT Copies the program to a RAM cartridge.
(Because this is a built-in subprogram, use
CALL PUT.)

The following keywords enable you to retrieve a copy of a
program stored on an external device.

Caution: When you retrieve a program from an external
device, any program currently stored in the TI-74’s memory
is erased. If you want to save the current program, be sure
to store it before retrieving the new program.

OLD Retrieves a program from an external
device. such as a cassette player.

GET Retrieves a program from a RAM cartridge.
(Because this is a built-in subprogram, use
CALL GET.)

Overview of BASIC 1.17

Storing and Retrieving Data Files

-2

When a program processes a large amount of data, it is usually
more convenient to store the data on an extemal device such as a

cassette playerirecorder.

M

Naming a The valid name for a file opened on an external device

Data File depends on the design of the peripheral. For cassette files, a
file name can have from 1 to 18 characters. The name must
start with a letter but can have any character except
comma or period in the rest of the name. Cassette file
names can include a .NM extension to omit messages.

Using The following keywords enable you to store and retrieve

Data Files data records. You can also delete data files.

FORMAT Initializes the storage medium on an
external device. (Cassette tapes do not
need to be formatted.)

Caution: If you reformat a medium that
already contains stored programs, those
programs are erased.

OPEN # Opens a communication link between the
TI-74 and the external device.

CLOSE # (Closes the cornmunication link between
the TI-74 and the external device.

PRINT # Stores a record on an open data file.

L

MW # Retrieves a record from an open data file.

EOF Tests the data file to see if there are any
remaining records in the file.

RESTORE Selects the next data record to be input.
(You cannot use RESTORE with a cassette
player/recorder.)

DELETE Deletes a specified data file from an
external device.

1-18 Overview of BASIC

Sending Information to a Printer
L e

By attaching an optlonal printer to the TI-74, you can print a
listing of the program cumently in memory. You can also include
statements in your programs to send information to the printer.

Listing a Program

Using a Printer
From Within a

Program

You can list a program by using a single keyword. You do
not have to OPEN and CLOSE the printer for a listing.

LIST Prints a line-by-line listing of the program.
LIST must be used as a command,; it cannot
be used in a program.

The following keywords can be used as statements within a

~ program.

OPEN # Opens a communication link between the
TI-74 and the printer.

CLOSE # Closes the communication link between
the TI-74 and the printer.

PRINT # Sends a number or string to the printer.

10 Performs additional control operations that

are not built into TI-74 BASIC. (Because
this is a built-in subprogram, use CALL IO.)
The operations possible with the 10
subprogram depend on the design of your
printer.

Refer to ‘‘Controlling the Printer From BASIC" in Chapter 3
of this manual for informatiocn about using the PC-324

thermal printer.

Overview of BASIC 1.19

Chapter 2: Reference Section

This chapter describes each command, statement, and function
of TI-74 BASIC. The keywords are presented in alphabeticai

order.

e P e

Table of ConventionsinthisChapter.
Contents Alphabetical referencesection

|
Reference Section 2+1

Conventions in this Chapter

e —

Order

Format

All descriptions of the BASIC keywords follow the same order of
presentation. The order and the conventions used in the
descriptions are explained below.

The purpose of the keyword is stated first.

The Format section gives the complete syntax of the
keyword. |

The Description section explains the keyword’s use or

function and includes the options that the Keyword can use.

The Example section gives examples of the keyword’s use,
where appropriate.

The Cross Reference section refers to similar and
complementary keywords, where appropriate.

The Format sections use the following conventions.

Conventions

22

» KEYWORDS are capitalized.

> Variables are in italics.

> Optional items are enclosed in brackets ([]).

» All parentheses are required. Parentheses included with
an optional item must be included when the optional

item is used.

e [tems that may be repeated are indicated by ellipses (. .)

Reference Section

.'_M

ABS

M

~ The ABS function computes the absolute value of a numeric
expression. The absolute value is always a positive number or

Zero.

Format ABS(numeric-expression)

The ABS function operates on the numeric expression as

Description
described below:

» If numeric-expression is positive or zero, ABS returns
the value.

» If numeric-expression is negative, ABS returns the
negative of the value.

140 PRINT ABS(42.3) :PAUSE

Examples
Prints 42 . 3.

370 V=ABS(-6.124)
Sets V equal to 6.124.

Cross Reference SGN

Reference Section

2-3

Format

Description

The ACCEPT statement suspends program execution and
enables you to enter data from the keyboard. This statement can
accept data at any column in the display, erase all or part of the

display, limit the number and type of characters accepted, and
provide a default value for the input.

ACCEPT [[AT(column)] [SIZE(numeric-expression)]
[ERASE ALL] [VALIDATE(data-type,...)]

[NULL{expression)], Jvariable
The general form of the ACCEPT statement

ACCEPT variable

assigns the data entered from the keyboard to variable. The
variable can be either numeric or string, depending on the
type of data to be entered. You can enter a maximum of 80
characters, and any trailing spaces are ignored.

The display is cleared from the current cursor position to
the end of the 80-column line. Input begins in column 1
unless a pending input/output statement positions the

cursor elsewhere, in which case input is accepted at the
cursor location.

Note: To enter a string that contains a comma, a quotation

ma:rk, or leadin_g or trailing spaces, you must enclose the
string In quotation marks. A quotation mark within a string
1s represented by two adjacent quotation marks.

When an ACCEPT statement is waiting for data, [CLR] clears

only the input field; [CTU[1] (home) and [CTU{+] (back tab)
move the cursor to the beginning of the input field; and

[CTLI[—] has no effect.

2.4 Reference Section

———-—"__.————

Options

You can use one or more of the following opticens, in any
order, with the ACCEPT statement. Precede each option by
a space (unless it is preceded by the close parenthesis **)”" of
a previous option), and be sure to place a comma after the
last option before variable. '

» AT{(colummn)—positions the cursor at the column
specified by the rounded value of column. The Input
field extends from the cursor position to the end of the

80-column hne.

Valid column values range from 1 through 31. If the
rounded value of column is outside this range, the error

message Bad value is displayed.

» SIZE(numeric-expression)—limits the maximum number
of characters that can be entered. You can enter up to
the absolute value of numeric-expression characters.

If the value of numeric-expression is positive, the input
field is cleared before input is accepted.

If the value of numeric-expression is negative, the input
field is not cleared. This allows you to use a previous
DISPLAY or PRINT statement to place a default value

into the input field.

The cursor is left in the first position following the input
field for subsequent input/output statements.

Note that the SIZE option specifies only the maximum
number of characters that can be input. Regardless of
the specified size, the input field cannot extend beyond
the end of the 80-column line.

» ERASE ALL—clears the entire 80-column display line
before accepting input.

Reference Section 25

ACCEPT (Continued)

— _H_'-'_—_—I—HI_H—._—______-

Options
{Continued)

> VALIDATE(data-type)—allows you to enter only the
chargcters specified by data-type. If more than one data-
type is specified, a character from any of the types is
acceptable.

Data-type can be one of the types shown below.

Type Valid input

ALPHA All alphabetic characters

UALPHA Only uppercase alphabetic characters

DIGIT All digits (0—9)

NUMERIC - All digits (0—9), the decimal point (.),
the plus sign (+), the minus sign (-),
and the uppercase letter E

ALPHANUM All alphabetic characters and digits

UALPHANUM Only uppercase alphabetic characters

and digits

Note: When using the UALPHA and UALPHANUM
data-types, any lowercase alphabetic characters entered
are automatically accepted as uppercase characters.

Data-type can also be a string expression, in which case
any character or combination of characters in the string
IS acceptabie as input.

» NULL{expression)—provides a default value specified by

expression. If you press [ENTER] with a blank (or null)
mpqt field, the default value is automatically assigned to
variable. Note that the default value is not affected by
the VALIDATE option.

26 Reference Section

______ e

M

.N_—.“

Additional
Entry Methods

Examples

Cross Reference

There are two additional methods of entering data during
the execution of an ACCEPT statement. You can:

» Use the [FN] key to input keywords and user-assigned
strings.

» Enter a numeric expression if variable is numeric. The
expression is evaluated and the result is assigned to

variable.

100 ACCEPT AT(5)ERASE ALL,T
Clears the display and accepts data starting in column 5
through the end of the line. The data is assigned to the

variable T.

320 ACCEPT VALIDATE("YN") SIZE(1) .A%
Accepts a one character field consisting of either Y or N.

The character is assigned to the variable A$.

430 ACCEPT AT(3)SIZE(-5) VALIDATE(DIGIT,"+-") X

Accepts up to 5 characters, beginning in column 3, for the
variable X. The input characters must consist of digits or the
characters+or —. The input field is not erased because the

SIZE specification is negative.

570 ACCEPT NULL(PI),C
Accepts data for the variable C. If no data has been entered

when you press [ENTER], the value of Plis stored in C,

210 DISPLAY "“ADDRESS: ”;:ACCEPT AT(10) , 6 ADDR$
Shows ADDRESS : and positions the cursor after the prompt.
Accepts data for the variable ADDRS. Notice that a pause is
not needed with DISPLAY because the semicolon creates a

pending print condition.

INPUT, LINPUT

Reference Section 247

ACOS ACOSH

The ACOSH function computes the hyperbolic arccosine of a
numeric expression.

The ACOS function computes the arccosine of a numeric
expression.

Format ACOS(numeric-expression) Format ACOSH(numeric-expression)

The ACOSH (hyperbolic arccosine) function returms the
number whose hyperbolic cosine is numeric-expression.

The definition of hyperbolic arccosine is:

i’ |!’ i Description The ACQS function returns the angle whose cosine is Description
L numerw-expression. This angle is interpreted as radians,
) degrees, or grads according to the current setting of the
L il angle units (RAD, DEG, or GRAD).
H ACOSH(X) = LN(X + SQR(X*X - 1))

The value of numeric-expression must be in the range of

100 PRINT ACOSH(1):PAUSE

L .
: ilg{ | - {lrthrlzugh 1. Otherwise, the error message Bad argument Examples _ :
| ||_’| [l is displayed. Prints 0 (the hyperbolic arccosine of 1).
0
il The range of values returned by the ACOS function for the 230 A=ACOSH(4/3) iy .
I three angle settings is shown below. Sets A equal to .7953654612 (the hyperbolic arccosine of
!|| | % 4;’3).
M |
Hall Angle Setting 'Range of Values Cross Reference ASINH, ATANH, COSH, SINH, TANH
] DEG 0< ACOS(X)< 180
It RAD 0< ACOS(X) £ PI
I
;a 1) GRAD 0< ACOSX) < 200
|-
:
| Examples 100 DEG:PRINT ACOS(1) :PAUSE
] Prints 0. (The cosine of 0 degreesis 1.)

Bt 220 RAD:T=ACOS(.75)
: Sets T equal to .7227342478.

Cross Reference ASIN, ATN, COS, DEG, GRAD, RAD, SIN, TAN

[2.8 Reference Section Reference Section 2:9

ADDMEM Subprogram
e ———————————S

The ADDMEM subprogram appends the Random Access
Memory (RAM) contained in an Installed 8K Constant Memory™
cartridge to the available resident memory.

Format

Description

Cross Reference

CALL ADDMEM

The ADDMEM subprogram expands resident memory to
include the memory in a RAM cartridge. The TI-74 then
treats the combined mémory as continuous resident
memory.

The ADDMEM subprogram can be used only as a command;
it cannot be used in a program.

The memory capacity resulting from adding cartridge
memory to resident memory is 16K bytes.

The error message E31 No RAMis displayed if no 8K
Constant Memory cartridge is installed when CALL
ADDMEM is executed.

When the memory in an 8K Constant Memory cartridge is
appended to resident memory, the system retains stored
BASIC program lines.

Before you execute an ADDMEM subprogram, the memory
in an 8K Constant Memory cartridge is identified by the
T1-74 as a separate memory area. The contents of resident
memory can be stored in the cartridge by a PUT command.
After an ADDMEM subprogram is executed, however, the
TI-74 considers the cartridge to be part of resident RAM,
and the cartridge memory is no longer available as a
separate memory area.

The memory in an 8K Constant Memory cartridge remains
appended to the resident memory until a NEW ALL
command 1s executed, the computer is turned on without
the cartridge installed, the batteries are removed, or the
system is Initialized.

GET, PUT

210 Reference Section

ASC

Format

Description

Examples

Cross Reference

The ASC function converts the first character in a string to its
equivalent ASCI| character code.

ASC(string-expression)

The ASC function returns the ASCII code of the first

character in string-expression. You can use any string
except the null string, in which case the error message
Bad argument is displayed.

ASC is the inverse of the CHR$ function. A list of the ASCII
codes is given in Appendix B.

100 X = ASC("A")
Sets X equal to 65 (the ASCII code for the letter A).

130 DISPLAY ASC(”"HELLO") :PAUSE
Displays 72 (the ASCII code for the letter H).

790 DISPLAY ASC(A%) : PAUSE
Displays the ASCII code for the first character in AS$.

CHR$

Referance Section 2:11

Format

Description

Examples

The ASIN function computes the arcsine of a numeric
expression.

ASIN(numeric-expression)

The ASIN function returns the angle whose sine is numeric-
expression. This angle is interpreted as radians, degrees, or
grads according to the current setting of the angle units
(RAD, DEG, or GRAD). |

The value of numeric-expression must be in the range of
— 1 through 1. Otherwise, the error message Bad argument
Is displayed. ‘

The range of values returned by the ASIN function for the
three angle settings is shown below.

Angle Setling Range of Values

DEG ~90 < ASIN(X) < 90
RAD - PI/2 € ASIN(X) € P12
GRAD — 100 £ ASIN(X) < 100

140 DEG:PRINT ASIN(1) : PAUSE
Prints 90. (The sine of 90 degreesis 1.)

240 RAD:B=ASIN(.9)

Sets Bequalto 1.119769515.

Cross Reference ACOS, ATN, COS, DEG, GRAD, RAD, SIN, TAN

2-12 Reference Section

ASINH
e —

The ASINH function computes the hyperbolic arcsine of a
numeric expression.

-

Format ASINH(rumeric-expression)

Description The ASINH (hyperbolic arcsine) function calculates the
number whose hyperbolic sine is numeric-expression. The
definition of hyperbolic arcsine is shown below.

ASINH(X)=LN(X + SQR(X*X + 1))

Examples 100 PRINT ASINH(O) : PAUSE
Prints 0.

230 A=ASINH(4/3)
Sets A equal to 1.098612289 (the hyperbolic arcsine of 4/3).

Cross Reference = ACOSH, ATANH, COSH, SINH, TANH

Reference Section 2-13

ATANH ATN

The ATANH function computes the hyperbolic arctangent of a The ATN function computes the arctangent of a numeric
numeric expression. expression.
|
1.
i'_f 1 Format ATANH(numeric-expression) Format ATN(numeric-expression)
| 1, |
Bt Description The ATANH (hyperbolic arctangent) function calculates the Description The ATN function returns the angle whose tangent is
0l number whose hyperbolic tangent is numeric-expression. numeric-expression. This angle is interpreted as radians,
N The definition of hyperbolic arctangent is shown below. degrees, or grads according to the current setting of the
i angle units (RAD, DEG, or GRAD).
il ATANH(X)=.5*LN((1 + X)/(1 - X))
H , The range of values returned by the ATN function for the
I Examples 100 PRINT ATANH(O) : PAUSE three angle settings is shown below.
i Prints O.
1] |
i1l | 230 A=ATANH(4/7) Angle Setting Range of Values
] * Sets A equal to .6496414921 (the hyperbolic arctangent of
I , 4/7). DEG -90< ATN(X) < 90
Cross Reference ACOSH, ASINH, COSH, SINH, TANH RAD | —P1/2 € ATN(X) < PL1/2
GRAD - 100 <€ ATN(X) < 100
Examples 130 DEG:PRINT ATN(1) :PAUSE
:I Prints 45. (The tangent of 45 degreesis 1.)
810 RAD:Q=ATN(Z2.5)
Sets Q) equal to 1.19028995.

]! | Cross Reference ACOS, ASIN, COS, DEG, GRAD, RAD, SIN, TAN

2.14 Reference Section Reference Section 2-15

BREAK CALL

The tBHEﬁﬁ:t::::f"ti:t“:?::ds pr?g:‘am execution at specified The CALL statement transfers control from the main program to a
e PoInts, ca poInis, In a program. specified subprogram. After the subprogram is executed, control
L o retums to the first statement following the CALL statement.

I ||
1l —
!i
!; i Formats gggfé Vine-nasmber-list Formats CALL subprogram-name
i CALL subprogram-name (argument-list)
| lii Description EE]E ;wg formats for l:he_ BREAK statement are described Description The two formats for the CALL statement are described
e oW below. .
.'! | > BREAK—*C_HLEES an immediate breakpoint when the » CALL subprogram-name—transfers program control to
R I statement 1s executed. the first subprogram found with the given subprogram-
- * . , name. The subprogram-name must be the name of an
i > BREAK line-number-list—sets a breakpoint(s} existing subprogram. Otherwise, the error message
N immediately before the specified line(s). If more than E13 Not foundis displayed ’
| ‘ one line-number is specified, the lines must be separated '
il by a comma. » CALL subprogram-name (argument-list)—uses the
il - : — argument-list to pass data to and from a subprogram.
i is When a breakpoint occurs, the message BREAK is displayed. Thrgeulist may ¢ ﬂnslijst of One or more argmnenfs separated
s A breakpoint remains in the program until you edit or delete b Th ber and f €5 §
I the line or use the UNBREAK statement y commas. 'ne miumber and types of arguments in
'. L ' ' argument-list must match the parameters in the
i , . : parameter-list of the subprogram. Otherwise, the error
| ‘ BREAI_{lsusefulmdebuggu}gapmgrmn. ‘?“‘E“ program message E23 Bad argument orkEl Syntaxis
I execution halts at a breakpoint, you can print variables and displayed
| perform calculations to determine why a program is not | '
11 fxecutmg correctly. You il.an use the CONTINUE command Subprogram The order in which the computer searches for a specified
il O résuine program execution. Priority subprogram is as follows.
ay . :
I The BREAK statement is often used as a command, in oy :
I | which case you must include a line number. The [BREAK] L E%I‘IIE n subpro such as ADDMEM, ERR, 10, and
Il | key also causes the program to halt as if a BREAK statement
! had been executed. 2. BASIC subprograms defined with the SUB statement
- Examples 150 BREAK srams - -
| Causes a breakpoint when the BREAK statement is 3. Subpro located in software cartridges
-
- executed. Each built-in subprogram is discussed under its own entry in
i this chapter. BASIC subprograms are discussed in Chapter 1
I
| 100 BREAK 120, 130 . _ and in this chapter under SUB.
| Causes breakpoints before execution of lines 120 and 130.
Example 100 CALL KEY(K,3)
BREAK 10,400,130 o
Causes breakpoints before execution of lines 10, 400, and Calls the bullt-in subpro KEY.
130. Cross Reference ADDMEM, ERR, GET, 10, KEY, PUT, SUB, SUBEND,
Cross Reference CONTINUE, ON BREAK, UNBREAK SUBEXIT
UL 2-16 Reference Section Reference Section 217

CHRS$

e Format

Description

Examples

The CHRS functlon converts a specified ASCI| character code to
its cormasponding display character.

CHR$(numeric-expression)

The CHR$ function returns the character that corresponds
to the ASCII code specified by the rounded value of
numeric-expression. The value of numeric-expression
must be in the range of 0 through 32767. Otherwise, the
error message Bad argument is displayed.

Because valid ASCII character codes only range from 0
through 255, any value of numeric-expression from 256
through 32767 1s automatically reduced by 256 until the
value represents a valid ASCII code.

The CHR$ function is commonly used in PRINT and
DISPLAY statements to display the extended character set,
such as the special graphics characters, which is not directly
accessible from the keyboard. CHR$ is also used to send
contrel codes to a peripheral device, such as a printer.

CHRS is the inverse of the ASC function. A list of the ASCII
codes is given in Appendix B.

440 PRINT CHR$(/2) :PAUSE
Prints H.

640 X$=CHR$(33)
Sets X$ equal to !

1] Cross Reference ASC

2-18 Reference Section

CLOSE

Formats

Description

Additional
Methods of
Closing a File

Exampie

Cross Reference

The CLOSE statement closes a specified file.

CLOSE #file-number
CLOSE #file-number, DELETE

The CLOSE statement terminates the association between a
file and its current file number.

The two formats for the CLOSE statement are described
below.

» CLOSE #file-number—closes the file that was previously
opened as file-number. If you attempt to close a file that
1S not open, the message Fi le error isdisplayed.

» CLOSE #file-number, DELETE-—closes and deletes the
file that was previously opened as file-number. This
format applies only to peripherals that allow you to
delete files.

After a file is closed, it cannot be accessed by the program
unless it is reopened. After a file is closed, file-rnumber can
be assigned to another file or device.

To protect the data in your files, open files are also closed
when you do any of the following.

¥

Edit the program or subprogram.

Enter a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

List the program to a peripheral device.

Call the ADDMEM subprogram.

Turn the system off or press the {(RESET] key.
Press the [MODEI key to switch to CALC mode.

¥

LA I A

Normal program termination also closes all open files.

790 CLOSE #6
Closes the file that was opened as file #06.

DELETE, OPEN

Reference Section 219

CONTINUE

Formats

Description

Exceptions

Cross Reference

2+20

The CONTINUE (or CON) command resumes program execution

following a breakpoint.

CONTINUE
CONTINUE line-number

The two formats for the CONTINUE command are

described below. The abbreviation CON may be used
instead of CONTINUE.

g

CON-—resumes execution beginning at the program line
that immediately follows the breakpoint.

CON line-number—resumes execution beginning at the
specified line-rnumber.

If the breakpoint occurred in the main program, line-
number must refer to a line number in the main
program. If the breakpoint occurred in a subprogram,
litne-number must refer to a line number in that
subprogram. Entering an improper lirne-number
produces unpredictable results.

If you do any of the following after the breakpoint occurs,

the CON command will not resume program execution.

-

-

Edit the program or subprogram.

Enter a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

Last the program to a peripheral device.
(all the ADDMEM subprogram.
Turn the system off or press the [RESET] key.

Press the [MODE] key to switch to CALC mode.

BREAK

Reference Section

COS
A —

Format

Description

Examples

Cross Reference

The COS function computes the trigonometric cosine of a

numeric expression.

COS(numeric-expression)

The COS function returns the cosine of numeric-expression.
The value of numeric-expression is interpreted as radians,

degrees, or grads according to the current seiting of the
angle units (RAD, DEG, or GRAD).

The value returned by the COS function is in the range of
— 1 through 1 for any angle units you select.

100 RAD:T=COS({PI)
Sets T equal to — 1 (the cosine of Pl radians).

200 GRAD:PRINT COS(30) :PAUSE
Prints .8910065242 (the cosine of 30 grads).

ACOS, ASIN, ATN, DEG, GRAD, RAD, SIN, TAN

Reference Section 221

2:22

COSH

e —

The CO§H function computes the hyperbolic cosine of a numeric
expression.

" Format

Description

Examples

Cross Reference

COSH(numeric-expression)

The COSﬂ (hyperbo]ic cosine) function calculates the
hyperbc:l!c cosine of numeric-expression. The definition of
hyperbolic cosine is shown below.

COSH(X) = .5*(EXP(X) + EXP(- X))

100 PRINT COSH(O) : PAUSE
Prints 1.

230 T=COSH(O.75)
Sets T equal to 1.294683285.

ACOSH, ASINH, ATANH, SINH, TANH

Reference Section

DATA

————————————————————————— ettt

The DATA statement is used with the READ statement to assign

values to variables.

Format

Description

DATA daita-list

When a READ statement is executed, the values in data-[ist
are assigned to the variables specified in the variable list of

the READ statement.

Data-list may consist of one or more NUMETIC OF string
constants separated by commas. Leading and trailing spaces
are ignored. Therefore, a string constant that contains
commas or leading or trailing spaces must be enclosed in

quotes.

A quotation mark within a string is represented by two
adjacent quotation marks. A null string 1s represented by
two adjacent commas, or by two commas separated by two

adjacent quotation marks.

If a numeric variable is specified in the variable list of the
READ statement, a numeric constant must be in the
corresponding position in the data-list of the DATA

statement.

If a string variable is specified in the READ statement,

either a string or a numeric constant may be in the
corresponding position in the DATA statement. However,

the data will be interpreted as a string.

Reference Section 2.23

DATA {Continued) -
e —————

Using the DATA

Statementina
Program

A DATA statement must be the only statement on a line. It
may be located anywhere in a program or subprogram. If a
‘program has more than one DATA statement, the
statements are normally read in sequential order beginning
with the lowest numbered line.

The RESTORE staternent can be used to reread DATA
statements or to alter the order in which DATA statements
are read.
Exampies Notice that the DATA statements can be placed anywhere
within the program.

100 FOR A=1 TQ 5
.* 110 READ B,C
‘ 120 PRINT B;C:PAUSE 1.1

130 NEXT A

Lines 100 through 130 read five sets of data and print their
values, two to a line.

140 DATA 2,4.6,7.8

150 DATA 1,2,3.,4.5

160 DATA "”"THIS HAS QUOTES” "

170 DATA NO QUOTES HERE

180 DATA "NO QUOTES HERE, EITHER”

Lines 160 and 180 use quotation marks to enclose strings
that contain quotation marks and a comma.

190 FOR A=1 TO 7

200 READ B$

210 PRINT B$:PAUSE 1.1

220 NEXT A

Lines 190 through 220 read seven data elements and print
each on its own line.

230 DATA 1, NUMBER, Ti ’
Line 230 uses a null string.

Cross Reference = READ, RESTORE

224 Reference Section

DEG .

The DEG statement sets the units of angle calculations to
degrees.

——_—_———ﬂ—_

Format DEG

Description The DEG statement sets the angle units to degrees until you:

» Enter RAD or GRAD as a command or statement to
change the units.

» Enter the NEW ALL command.
» [nitialize the system.

» Change the angle setting in CALC mode.

Entering the NEW ALL command or initializing the system
automatically changes the angle setting to RAD.

100 DEG

mples |
Examp Selects the DEG angle setting.

200 DEG:PRINT COS(90) :PAUSE
Prints 0 (the cosine of 90 degrees).

Cross Reference GRAD, RAD

Reference Section 225

DELETE |
————_—_—§___ e ——————

The DELETE (or DEL) command removes lines from the program

.' | ;! | currently in memory or a file from an external storage device.
LI |E

N

R |

i I |

i i |

Sl Formats DELETE line-grou ‘

N DELETE . Py fI? .E [«E‘E?’ymup o] Description » DEL "‘device. filename’’—deletes the file specified by
W ' (Continued) device. filename, where device identifies the peripheral
| Description The two formats for the DELETE command are described ?f?ﬁ;ﬁg {?t:}tfél ft'ﬁlee ile is stored and filename identifies

N E%lm The abbreviation DEL may be used instead of |

i LETE.

' ‘ i Device must be a number from 1 through 255 that
A : . corresponds to the device number of the peripheral.
Wil " DEL Line-group [, linegroup . . .J—deletes the specified Refer to the peripheral manual for mfﬂm?aeﬁnn
'l lines from the program i P DEID
i ' PIO; In memory. You can specify line- concerning the device number.

[iind %wp as a single line number or a range of line numbers. |
R ou ¢ ‘ ; :

! them ﬁ&l? ;E;Egg several line-groups by separating Some peripheral devices also enable you to delete data

1] ' files by using DELETE in the CLOSE statement. Refer to

| the peripheral manual for more information.

PR | Lin

hl | ogroup Lines Deleted Examples DEL 10-50,90,110-220

:_hil. .lil DEL 100 Line number 100 only | Deletes lines 10 threugh 50, 90, and 110 through 220.
| DE ~ . DEL 900-
iy L. 100 Lines from number 100 to the Deletes lines 900 through the end of the program.

‘_ !;_:_5 highest line number, inclusive
I - . ' -500, 750

‘ . DEL - 100 Lines from the lowest line number Doletoc ol i thro i

. - Deletes all lin 500 and line 750.
N to line number 100, inclusive = = ugh . :

N _ DEL "8.inventory”

. DEL 100— d
‘ L 100- 300 hnes frnm. number 100 to number Deletes the file “‘inventory™ from device 8.
300, inclusive

Cross Reference CLOSE, NEW

) It line-group specifies only one line number and that line
' ; number c{ljtl}ses not exist, the message W11 Line number
) error is displayed. However, any other listed line-grou
1s deleted when you press [ENTER]. ?

I If the initial line of arange does not exist, the next
| fhﬂlg:]elz;nuénbered line is used as the initial line. If the
| in € does not exist, the next lower-numbered line i
used as the final line. .

2.26 Refere
nce Section Reference Section 2.27

DIM

Format

Description

The DIM statement defines the dimensions, size, and type of an
amay.

DIM array-name (irdegerl | , integer@]|, indeger3])|, ...]

When a DIM statement 1s executed, the T1-74 chooses a
block of memeory, labels it with the specified array name,
and allocates enough memory space to contain the elements
of the array. Note that a DIM statement can define more
than one array.

Array-name is a string or numeric variable name. The data
contained in an array must be either string or numeric data,
as specified by the array name.

The number of values in parentheses following array-name
determines the number of dimensions In the array. Arrays
with up to three dimensions are allowed. Each value
represents the maximum subscript in that dimension of the

array.

The lowest value of a subscript is zero. Therefore, the
number of elements in each dimension is one more than the
maximum subscript. For example, an array defined by DIM
A(6) is a one-dimensional array with seven elements, A(0)
through A(6).

When execution of a program begins, each element of a
numeric array is set to zero, and each element of a string
array is set to the null string.

If an array is not defined by a DIM statement, the maximum
value of each subscript is set to 10 when your program first
references the array.

2.28 Reference Section

Examples

Cross Reference

‘When you are using a DIM statement in a program, the

following rules apply.
» An array can be dimensioned only once.

» Todefine an array, a DIM statement must be executed
before the first reference to the array.

» Remarks (REM) and tail remarks (!) are the only
statements which may appear after a DIM statement on
a multiple-statement line.

» A DIM statement cannot appear in an IF THEN ELSE
statement.

120 DIM X$(30)
Reserves space in the computer’s memory for 31 elements

of the string array called X$. Each element is initialized to
the null string.

430 DIM D(100),B(10,9)
Reserves space in the computer’s memory for 101 elements
of the array called D and 110 (11 times 10) elements of the

array called B. Each element of each array is initialized to
Zero.

Refer to ‘“‘Using Arrays’’ in Chapter 1.

Reterence Section 2.29

DISPLAY

The DISPLAY statement displays the value(s) included in print-
list. (The options available with DISPLAY often make it more
versatile than the PRINT statement.)

Formats DISPLAY [[AT(column)} [ERASE ALL)] [SIZE(numeric-
expression)] [USING line-number,]|prind-list

DISPLAY {[AT{column)] [ERASE ALL] [SIZE(numeric-
expression)] [USING string-expression,|] print-list

Description The DISPLAY statement formats and displays the value(s)
included in print-list.

Print-tist consists of print items and print separators. A
print item can be a numeric expression, a string expression,
or a TAB function. A print separator can be a comma or a
semicolon, which determines the position of the next print
item in the display. For information about the effect of

commas and semicolons on spacing, refer to PRINT in this
chapter.

Options The options available with DISPLAY give you control over
the format of displayed information. They can be included
in any order and must be preceded by a space (unless
preceded by the close parenthesis *‘)’ of a previous option).

» AT(column)—positions the first character of the
displayed information at the column specified by the
rounded value of column. Valid colurmn values are from
1 through 80. If column is larger than 80, the TI-74
retuins the E4 Bad value error message.

The evaluation of the TAB function and comma
separators is relative to the starting position specified by
the AT option. However, if the characters to be
displayed exceed column 80, the displayed information
begins in column 1, not in the column specified by the
AT option, the TAB function, or a comma separator.

The AT option may be affected by the SIZE option. See
the following page for additional information.

2:30 Reference Section

Options
{Continued)

If AT s omitted, output begins in location 1 unless a
pending input/output statement exists, and the TAB
function and comma separators are relative to column 1.

ERASE AlLL—clears the line before displaying data.

SIZE(numeric-expression)—limits the number of
displayed characters to the absolute value of numeric-
eXPression.

If numeric-expression is larger than the number of
remaining positions, the display field extends from the
current display position to the end of the line. The length
of the display field defined in this manner becomes the
new record length for evaluating the TAB function and
comma separators in prini-list. The display field is
cleared prior to displaying data.

If the SIZE option is omitted and the characters to be
displayed exceed column 80, you can only view the
information by including a PAUSE ALL statement prior
to the ouput line. You can then view the print item one
line at a time, pressing [ENTER] or [CLR] to display the
next segment. However, if the SIZE option 1s used when
characters exceed column 80, the text is truncated to 80
columns or to the number of characters specified by
SIZE, whichever is shorter.

When the SIZE option is omitted, the display is not
cleared (unless ERASE ALL is specified) prior to
displaying data. If there is no trailing separator after
prind-list, termination of the DISPLAY statement clears
the display from the last item displayed to the end of the
line.

USING—may be used to specify an exact format for the
output. If USING is specified, it must appear last in the
option list. Refer to IMAGE and USING for a description
of format definition and its effect upon the output of the
DISPLAY statement.

Reference Section 231

DISPLAY (Continued)

m

Examples

Cross Reference

120 DISPLAY AT(7).Y

Displays the value of Y starting at column 7 and clears
everything following the number. The value actually
appears in column 8 since the sign precedes the number.

150 DISPLAY N

Displays the value of N in column 1 of the display and clears
the rest of the display.

180 DiISPLAY ERASE ALL.B
Clears the entire display before displaying the value of B.

370 DISPLAY AT(C) SIZE(19) . X

Clears 19 characters starting at position C and displays the
value of X starting at position C.

IMAGE, PAUSE, PRINT, TAB, USING

2.32 Reference Section

END

W

Format

Description

Cross Reference

The END statement closes all open files and then stops program
execution. Although it may appear anywhere, END Is often placed

‘as the last line in the main program.

END

The END statement is not a required statement. Normally, a
program stops automatically after the highest-numbered
line in the main program is executed.

All subroutines of the main program must occur before the
END statement. However, subprograms can be placed after
the END statement.

STOP

Reference Section 2.33

EOF

gRR Subprogram
m M
a | The EOF tunction is used when a program Is inputting records The ERR subprogram retums the error code, error type, and
’i" | from a flle. it tests whether there are records remaining in the | optionally, the file number and line number of the last uncleared
= | I spacified file. elror.
) |

—ee e T —
Format EOF(file-number) Format CALL ERR(error-code,error-type |, file-number,
it line-rumber])
| ‘ Description The EOF function returns a value that indicates the current
[position in the file specified by file-number. The value of Description When an error occurs, a subroutine can be called (see ON
Tl Jile-number must correspond to the number of an open file. ERROR) that contains CALL ERR. The error is cleared when
At " Utherwise, the error message Fi le error is displayed. this error-processing subroutine terminates with a
ik] RETURN.
L
| ‘ Value Position If no error has occurred, CALL ERR returns all values as
LI N - ZeT0S.
it h 0 Not end-of-file |
h . Parameters > error-codes—range from 0 through 127. The meaning of
ii | |‘ ‘ -1 [A)glcal end-of-file each error code is listed In App@ﬂdlx D.
vi‘fi |‘ | |: .. » error-type—is always 0 unless error-code is 0, which 15 an
I‘ | The logical end-of-file occurs when all records on the file input/output (I/O) error. For an I/O error, error-type1s an
! || - have been input. EOF always treats a file as if it were being I/0 error code specified by each /O device. The range for
il accessed sequentially, even if it has been opened for I/0 error codes is 0 through 255.
‘!;' I relative access. .
‘- é,l [; Options » file-number—is 0 unless the error is an §/0 error. For an
I il Using the EOF is often placed before an INPUT statement to test the 1/0 error, file-number is the file number used in the /O
Pt |' EOF Statement file status before attempting to read from the file. When a statement that caused the error.
i ‘ program uses pending INPUT statements (refer to INPUT _
| ‘ with tiles), EOF does not indicate whether pending input » line-number—is the number of the line being executed
A data remains in the memory buffer, when the error occurred. It is not always the line that is
; ‘ the source of the probler since an error may occur
m ; Examples 710 iF EOF(27) THEN 1150 because of values generated or actions taken elsewhere
!= Transfers control to line 1150 if the end-of-file has been - in a program.
ii | reached for file #27.
: EXHI'“D'ES 170 CALL ERR(A,B)

I‘ The following statements open a file and check to see if the Sets A equal to the error-code and B equal to the error-type

end-of-file is reached before trying to read a record. When of the most recent uncleared error.
the end-of-file is reached, the file is closed.

- 390 CALL ERR(W,X,Y,Z)
| 100 OPEN #3,72 .CFILE" , INTERNAL Sets W equal to the error-code, X equal to theierrﬂr‘tgme, Y
110 IF EOF(3) THEN CLOSE #3:STOP equal to the file-nuwmber, and Z equal to the line-number of

120 INPUT #3, A%.D.E the most recent uncleared error.
130 PRINT A% ;D E:PAUSE 1

140 GOTO 110 Cross Reference ON ERROR, RETURN (with ON ERROR)

Cross Reference INPUT (with files)

i:: 2+34 Reference Section Reference Section 2+35

EXP FOR TO STEP

The EXP function computes the antilogarithm, e*, of a numeric S The FOR TO STEP and NEXT statements are used to set off a
expression. The internal value for e is 2.71828182848. series of statements to be performed a specific number of times.

e EEEEE—————————... e ———————————
IR Format EXP(numeric-expression) Format FOR control-variable = initial-value TO lvmal
L [STEP increment]
1 Description The EXP function returns the value of X, where x equals
u‘ i the value of numericexpression. Description The FOR TO STEP statement is used with the NEXT
1 statement to form a loop, a series of statements performed a
‘- :?:.:!:] EXP is the inverse of the LN function. specific number of times. Control-variable is an
“" . * unsubscripted numeric variable that acts as a counter for
| i | Examples 150 PRINT EXP(7) :PAUSE the loop. Initial-value, limit, and increment are numeric
i “ Prints 1096 . 633158 (the value of e raised to the 7th expressions.
I‘ | power),
-“ii: : | When the FOR statement is executed, tritial-value is
|‘ !‘ 390 L=EXP(4.394960467) assigned to control-variable. If initial-value exceeds lim:t,
m'\ | Sets L equal to the value of e raised to the 4.394960467 the loop is skipped and execution continues with the
“ | ~ power, which is 81.04142689. statement after the NEXT statement. Otherwise, the
| l‘i- 5 - statements following the FOR statement are executed until
Wt Cross Reference LN the corresponding NEXT statement is executed. Increment

|‘| I is then added to control-variable. If control-variable 1s not
'|:a'| I greater than limit, execution returns to the statement
1 following the FOR statement.

!!;,'.‘_ ' When control-variable becomes greater than lzmit, control
Al transfers to the statement following the NEXT statement.

! Control-variable then equals the value it had in the last pass
af through the loop plus the value of ¢ncrement.

I A loop contained entirely within another loop is called a

| nested loop. Nested loops must use different control

‘ ‘ | . variables. Program execution can be transferred out of a
loop using GOTO, GOSUB, or I[F THEN ELSE and then

|i | returned back into the loop.

| If a NEXT statement is executed before its corresponding
FOR statement, an error occurs.

STEP incremeni specifies the value that is added to control-
variable each time the loop is executed. If STEP ¢ncrement
is omitted, the increment is 1. If increment 1s negative,
control-variable is decreased each time through the loop
and lZmit should be less than initial-vaiue. The loop is
skipped if initial-value is less than limit. Otherwise, the
loop is executed until control-variable is less than limit.

2:36 Reference Section Reference Section 2.37

FORTO STEP {Continued) | ORM AT
“ . A —
' T

The FORMAT statement initializes a medium on an extemal

storage device.

——— _"_"_'_"_——-_—-_-_.__.' __ . e -
I | ' - Description Some external storage devices cannot store on a medium
‘ | ' - unless the medium has been initialized. The FORMAT
Al 130 NEXT A | statement initializes the medium installed on an external
I” [H Executes the statements between FOR and NEXT A three storage device.
' ‘ | times, with A having values of 1, 3, and 5. After the loop is
|N' ‘ | finished, A has a value of 7. Device is the number associated with each physi'cal device
R . and can be from 2 through 255. Refer to the peripheral
II" I 230 FOR J=7 TO -5 STEP -.5 manuals to obtain the device code for each peripheral
‘H ‘ ' | device.
““M | 3 50 NEXT J Imtlahzmg destroys all information previously stored on a
‘ e Executes the statements between FOR and NEXT J 25
iR | times, with J having values of 7, 6.5, 6, ..., -4, - 4.5, and Note: Formatting does not apply to cassette tapes used on a
N | | — 5. After the loop is finished, J has a value of -5.5. cassette recar:llgljg. PPy
i _
|"'” I 700 FOR X=1 TO 2 STEP -1 Example 140 FORMAT 2
Al) [nitializes the medium currently in the mass-storage device
““ i - designated as device number 2. All data previously stored

on the medium is destroyed.

ﬂ# i 780 NEXT X

- Does not execute the loop because increment is negative
s - and the initial value is already less than the limit.

Cross Reference NEXT

2.38 Reference Section Reference Section 2-39

FRE - | | |
The FRE function provides information about the current use of - |
memory in the computer. S The GET subprogram replaces the contents of system memory

with information from a RAM cartridge.

i B EEEEE—
i Format FRE(numeric-expression) | ‘
‘ | Format CALL GET (image-number)
i Description The FRE function returns information about memory
|t availability and usage: Description The GET subprogram retrieves a copy of a system RAM
‘ | image from an 8K Constant Memory cartridge. The term
itk » How much is currently available for prog “image’’ applies to all contents of the 8K system RAM,
" !: storage. Pro and data including program lines, variables, and unused space.
> How much is occupied by the current program i | The image-number canbe 1 or —1. The 1 causes the
memory. d Pro o | cartridge image to be copied into memory and the -1
| causes an exchange of memory images. This option enables
The value of numeric-expression selects the type of you to store the program from memory while retrieving a
information as follows. | cartridge program.
| As cartridge contents are copied or exchanged, the
Value Meaning computer checks to see that the cartridge contains an image
' | of system memory. If not, the computer returns an error
Il 0 Evlemnry available for program and data storage message.
Hn memory space not reserved for svstem ion). -
|\ | | SyStem operation) Examples CALL GET(1)
._;l | 1 Total space occupied by the program currently in Copies the cartridge image into system RAM.
|| | memory. The value returned includes 11 bytes for
) program overhead. CALL GET(-1)
Bl | Exchanges the cartridge image with the system RAM.
ey .
;
3 Example 300 A=FRE(1) Cross Reference PUT, ADDMEM
. Sets A equal to the number of bytes required to store the |
| current program.

2-40 Reference Section
Reference Section 2-41

- GOSUB

Format

Description

Example

Cross Reference

| &
! ! m

The GOSUB statement stores a retum location and then transfers
program control to a subroutine.

GOSUB line-rawomnber

The GOSUB statement transfers control to the subroutine
that begins at line-number. The statements of the
subroutine are executed until a RETURN statement is
encountered. A RETURN statement returns control to the
statement following the GOSUB statement.

Subroutines may be called any number of timesin a
program and may call themselves or other subroutines. The
GOSUB statement cannot be used to transfer control into or
out of a subprogram.

Note: When a subroutine references itself, you must make
the GOSUB conditional. Otherwise, the computer’s memory
can be filled with return addresses.

100 GOSUB 200

Transfers control to line 200. The statement at line 200 and
all the statements that follow are performed until RETURN
Is encountered.

ON GOSUB, RETURN

2.42 Reference Section

The GOTO statement transfers program execution to another line
within a program.

—-—___—'_—_—-_u—._-—_,_____

Example

GOTO Line-number

When a GOTO statement is executed, control is passed to
the first statement on the line specified by line-number.

The GOTO statement cannot be used to transfer control into
or out of a subprogram. Attempting to do so results in an
Ell Line number error message.

100 GOTO 300
Transfers control to line 300.

Reference Section 2+43

Tl ias

GRAD

Format

Description

Examples

Cross Referance

The GRAD statement sets the units of angle calculations to
grads.

GRAD
The GRAD statemenit sets the angle units to grads unti you:

» Enter DEG or RAD as a command or statement to change
the units.

» Enter the NEW ALL command.
» Hitialize the systemn.
» Change the angle setting in CALC mode.

Entering the NEW ALL command or initializing the system
automatically changes the angle setting to RAD.

100 GRAD |
Selects the GRAD angle setting.

200 GRAD:PRINT COS(100) : PAUSE
Prints O (the cosine of 100 grads).

DEG, RAD

2.44 Reference Section

IF THEN ELSE h
M

The IF THEN ELSE statement performs a choice of actions based
on a condition, A true condftion causes one action and a false
condition causes a different action.

Format

Description

IF condition THEN actionl [ELSE actionZ]

The IF THEN ELSE statement performs one of two
specified actions based on a specified condition. If condition
is true, actionl is performed. If condition is false, action?2is
performed. If ELSE is omitted and condition is false, control
passes to the next line.

Condition can be either a relational expression or a numeric
expression. When a relational expression is evaluated, the
result is O if it is false and — 1 if it is true. When a numeric
expression is evaluated, a zero value is considered to be
false and a nonzero value is considered to be true.

Actionl and action2 may be line numbers, statements, or
groups of statements separated by colons. If a line number is
used, control is transferred to that line. If statements are
used, those statements are performed.

The [F THEN ELSE staternent must be contained on one
line. [F THEN ELSE statements can be nested by including
an IFF THEN ELSE statement in action! or action2. If a
nested [F THEN ELSE statement does not contain the same
number of THEN and ELSE clauses, each ELSE is matched
with the closest unmatched THEN.

IFF THEN ELSE statements cannot contain DIM, IMAGE,
SUB, or SUBEND statements.

Reference Section 245

IF THEN ELSE {Continued)

N

e

Examples

2+46

140 |F MBB=0 THEN 200

150 PRINT “NON-ZERO” :PAUSE 2

If MBB is zero, control passes to line 200. If MBB is not zero,
NON—ZERQ is displayed and program execution halts for 2
seconds before executing the next statement.

230 IF X>5 THEN GOSUB 300 ELSE X=X+5

If the value of X is greater than 5, GOSUB 300 is executed.
When the subroutine is completed, control returns to the
line following the IF THEN ELSE statement. If X is 5 or less,
X is set equal to X +5 and control passes to the next line.

250 IF Q THEN C=C+1:GOTO 500 ELSE L=L/C:

GOTO 300
If Q is not zero (true), C is set equal to C+ 1 and control is
transfered to line 500. If Q is zero (false), L is set equal to L/C
and control is transferred to line 300.

290 IF A$="Y” THEN COUNT=COUNT4+1:

DISPLAY AT(4),”Enter value:”,; :GOTO 200
If A$ is equal to *‘Y"", COUNT is incremented by 1, a
message is displayed, and control is transferred to line 200.
If A$ is not equal to **Y"", control passes to the next line.

350 |F HRS<=40 THEN PAY=HRS*WAGE ELSE
PAY=HRS*WAGE+ . 5*WAGE * (HRS-40) :0T=1

- 1f HRS is less than or equal to 40, PAY is set equal to

HRS*WAGE and control passes to the next line. If HRS is
greater than 40, PAY is set equal to
HRS*WAGE + 5*WAGE*(HRS-40), OT isset equalto 1,
and control passes to the next line.

700 |F A=1 THEN iF-B=2 THEN C=3 ELSE D=4
[fAisequaltol and B is equal to 2, Cis set equal to 3 and
control passes to the next line. If A is equal to 1 and Bisnot
equal to 2, D is set equal to 4 and control passes to the next
line. If A is not equal to 1, control passes to the next line.

Reference Section

IMAGE

Format

Description

Faormat Definition

The IMAGE statement enables you to define an output format.

IMAGE string-constant

The IMAGE statement specifies an output format for use in
DISPLAY USING and PRINT USING statements. The format
1S used by placing the line number of the IMAGE statement

in the USING option of DISPLAY or PRINT (see USING in
this chapter).

String-constani may be enclosed in quotation marks. If
string-constant is not enclosed in gquotation marks, leading
and trailing blanks are ignored.

The IMAGE statement must be the only statement on a
program line and must appear in the program or
subprogram that uses it. When an IMAGE statement is
encountered, execution immediately continues with the
next line of the program.

When a PRINT or DISPLAY statement uses a format
definition, the format fields are replaced by the values of
the print items, and the literal fields are printed exactly as
they appear In the format definition.

The three characters that may be used to define a format
field are the number sign (#), the decimal point (.}, and the

exponentiation symbol (~). The number sign defines a

~ character position in the format field. It is replaced by one

of the characters from the ASCII representation of the value
of the print item. The decimal point is used in a decimal
format field to specify the position of the decimal point. The
exponentiation symbol (~ } is used in an exponential format
field to specify the number of positions in which to print the
exponent value.

All other characters are literal and thus form literal fields.

Reference Section 2-47

IMAGE {Continued)

Exponential Field » Up to 14 significant digits may be specified.

Types of Fields The five types of fields ih a format definition are integer,
ecimal ' ' ' : rules that ‘ - _ '
‘ exponential, string, and literal, The » An exponential field consists of a decimal or integer

apply to each type are hsted below. field, which defines the mantissa, followed by 4 or 5

- Upio 14 siicant ighs may e specte. - e el the expoest. When
characters. When more than 5 are used, the first 5 are
used to define the exponential field, and the remainder
are considered to be literal characters.

integer Field
» An integer field is composed of number signs.

» When the number does not fill the field, the number is
ngnt] ted. » The number is rounded according to the mantissa

» When the number is longer than the field, asterisks (*) definition.

are printed in place of the value. » When the mantissa definition specifies positions to the

left of the decimal point, one of these positions is always
used for the sign, minus if negative and a space if
positive.

» Non-integer values are rounded to the nearest integer.

» When the number is negative, one number sign is used |
for the minus sign. String Field » The size of the field is limited only by the size of the
Decimal Field » Up to 14 significant digits may be specified. string that defines the format.

» A string field is an integer, decimal, or exponential field.
In addition to the number signs, the decimal point and
the exponentiation symbols define character positions.

» A decimal field is composed of number signs and a single
decimal point. The decimal point may appear anywhere
in the format field.

. | » The number is placed with the decimal point in the - %EH the string is shorter than the field, it is left-
' - specified position. Justified.
! i » When the integer part of the value is longer than the - » When the string is longer than the field, asterisks (*} are

i integer part of the format, asterisks (*) are printed printed instead of the value.
|- :instead of the value. Literal Field - Thie size of the field is limited only by the size of the
» The number is rounded to the number of places specified string that defines the format.

- tothe right of the decuna.l pomnt. » A literal field is composed of characters that are not

format characters. However, decimal points and

> When the number is negative, at least one number sign exponentiation symbols may also appear in literal fields

must precede the decimal point to be used for the minus

s1gn. :_ » Literal fields appear in the printed output exactly as they
' appear in the format definition.

2.48 Reference Section i Reference Section 2-49

IMAGE (Continued)

Examples The following program prints two numbers per line using
the IMAGE statement.

100 FOR COUNT=1 TO 6

110 READ A,B

120 PRINT USING 150; A,B:PAUSE

130 NEXT COUNT

140 DATA 99,-9.99,-7,-3.459,0,0,14.8,12.75,
79,852,-84,64.7

150 IMAGE THE ANSWERS ARE ## AND ## ##

The following chart shows the results.

Examplés
(Continued)

Values Displayed Results

99 -9.99 THE ANSWERS ARE 99 AND -9.99
—7 -3.459 THE ANSWERS ARE -7 AND -3 .46
0 0 THE ANSWERS ARE O AND Q0
14.8 12.75 THE ANSWERS ARE 15 AND 12.75
79 852 THE ANSWERS ARE 79 AND **¥**
-84 64.7 THE ANSWERS ARE ** AND 64.70

2-50 Reference Section

Cross Reference

The program below illustrates a use of IMAGE. It reads and
prints seven numbers and their total. The amounts are
printed with the decimal points lined up.

100 I1MAGE S#EHH HH

110 IMAGE " HEKH H#HE"

Lines 100 and 110 set up the images. They are the same

except for the dollar sign. To keep the blank space where

the dollar sign was, the string-constant in line 110 is

enclosed in quotation marks.

120 DATA 233.45,-147.95,8.4,37.263,-51.299,
85.2, 464

130 TOTAL=0

140 FOR A=1 TO 7

150 READ AMOUNT

160 TOTAL=TOTAL+AMOUNT

170 |IF A=1 THEN 180 ELSE 190

180 PRINT USING 100,AMOUNT :PAUSE: GOTO 200

190 PRINT USING 110, AMOUNT : PAUSE

Prints the values using the IMAGE statements.

200 NEXT A

210 PRINT USING "SH#H#HE ##" TOTAL:PAUSE

Uses the format directly in the PRINT statement.

When you run the program, the following values are
displayed:

$ 233.45
-147 .95
8.40
37 .26
-51 .30
85.20
464 .00

$ 629.06 (total amount)

DISPLAY, PRINT, USING

Reference Section 251

INPUT (with keyboard)

Format

Description

The INPUT statement enables you to enter data from the
keyboard when you run a program.

INPUT [input-prompt;] vartable-list [, input-prompt;
variable-list] [. . .]

When INPUT is executed, program execution is suspended
until you enter data from the keyboard. The entered data is
assigned to a variable and execution resumes.

Input-prompt is a string expression that must be followed
by a semicolon. If a string constant is used, it must be
enclosed in quotes. Input-prompt is displayed beginning at
the current display position as left by pending input/output
statements. If input-prompt is omitted, a question mark
followed by a space is used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
dispiaying the prompt. When input-prompt is greater than
30 characters, it is truncated to 30 characters.

Variable-list 1s a list of variables separated by commas. The
variables may be numerie or string, subscripted or
unsubscripted. When more than one variable follows input-
prompt, the prompt is displayed for the first variable only.
Thereafter, the question mark prompt is used until another
mput-prompt is encountered. Each value is assigned to the
corresponding variable name before the computer prompts
for the next value.

2.52 Reference Section

a1 awma

' S | — - Ve = ——— =n, — p—n

et e WLty e
.\I.I::.é&.:-.'| P e T M
el AN e i TR

.........

Descﬁptiﬁn
 (Continued)

3

e e 1 L Gt e I R T

iR

When variable-list specifies numeric input, you can enter a
numeric constant or a numeric expression. The expression 1s
evaluated and the result is assigned to the variable. In string
entries, leading and trailing spaces are ignored. Thus, if a
string value includes commas, leading spaces, or traiing
spaces, you must enclose the string in quotes. Two
consecutive quotation marks within a quoted string become

a single quotation mark in the displayed string.

If an error occurs during data entry, a descriptive error
message is displayed. After the [ENTER] or [CLR] key is
pressed, the INPUT statement reprompts and the data can
be entered in the correct form.

When data is entered, the following validations are made.

» [f more than one value at a time is entered, the message
El at linenumber Syntaxisdisplayed and the data
must be reentered one item at a time.

» If a string constant is entered for a numeric variable, the
message E3 at linenumber Mismatch is displayed
and a numeric value must be entered.

= If a number whose absolute value is greater than
9.99999999999999E + 127 1s entered, the message
W25 at line number Overf|owis displayed and the
value must be reentered.

» [If a number whose absolute value is less than 1E - 128 1s
entered, the value is replaced with 0 and no message is
displayed.

Note: When an INPUT statement is waiting for data, [CLR]
clears only the input field, [CTU [] (home) and [CTLI {+]
(back tab) move the cursor to the beginning of the input
field, and [CTL] [-+] has no effect.

Reference Section 253

INPUT (with keyboard) (Continued)

Examples 100 INPUT X

Cross Reference

204

Causes the computer to display the question-mark prompt
and wait for an input value. When [ENTER] is pressed, the
entered value is stored in the variable X.

100 INPUT X%.,Y,"ENTER Z7;Z{(A)

Causes the computer to display the question-mark prompt
and wait for an input value for X$. When [ENTER] is pressed,
the entered value is assigned to X$. The question-mark
prompt is again displayed and the computer waits for a
value to be entered for Y. Then ENTER Z is displayed and
the computer waits for an input value for Z(A). The

subscript is evaluated for Z{A) before the data value is
stored.

ACCEPT, INPUT (with files), LINPUT

—— TR R A e el -

Reference Section

L

The INPUT statement reads data from files that have been
opened in INPUT or UPDATE mode.

M

Format INPUT #file-number [, REC numeric-expression]
- varwble-list
Description The INPUT statement assigns information in a file to the

variables specified in variable-list. For INPUT to read a file,
it must be opened in INPUT or UPDATE mode.

File-number is a number from 0 through 255 that refers to
an open file or device. File number 0 refers to the keyboard
and display and is always open. See INPUT (with keyboard).
File-number is rounded to the nearest integer.

REC numeric-expression is used when file-number refers to
a RELATIVE record file. Numeric-expression specifies the
record to be read from the file. The first record of a file is
record zero. (Refer to individual peripheral manuals for
information about RELATIVE record files and the use of the
REC clause.} Note that relative files cannot be used with a

cassette recorder.

Variable-list is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubseripted. The data values in the current record are
assigned to the variables in the list. If the current record
does not contain enough data, another record is read.
Successive records are read until each variable is assigned a
value or the end-of-file is encountered.

When an INPUT statement terminates, any remaining data
values in the current record are ignored. The next INPUT

« statement that accesses the file reads another record.
However, when variable-list ends with a comima, the input
is left pending. That is, the remaining values in the current
record are maintained. The next INPUT statement that
accesses the file begins with the next available data value.

If pending input data exists when a PRINT, RESTORE, or
CLOSE statement accesses the file, the pending data is
discarded. If pending output data exists when an INPUT
statement is encountered, the pending data is output before
the INPUT statement is executed.

Reference Section 2+55

INPUT (with files) continued)
m

_—__—__—____—_—_'.—____.____—
File Types The computer interprets data differently when reading
DISPLAY and INTERNAL files.

DISPLAY-type data has the same form as data entered from
the keyboard. The values in each record are separated by
commas. Leading and trailing spaces are ignored unless they
are part of a string value enclosed in quotation marks.
Within a string value enclosed in quotes, two quotation
marks represent a single quotation mark. When the INPUT
statement encounters two adjacent commas, a null string is
assigned to the variable, Each item is verified to ensure that
numeric values are placed in numeric variables and string
values in string variables.

INTERNAL-type data is in binary format, the format used
internally during execution. Each value is preceded by its
length. The INPUT statement uses the lengths to separate
and assign the values to the variables. The only validation
performed by the INPUT statement is to assure that
numeric data is from 2 to 8 bytes long.

Examples 100 INPUT #1 X$

Stores in X$ the next value available in the file that was
opened as #1.

250 INPUT #23,X,A,LLS

Storesin X, A, and LL$ the next three values from the file
that was opened as #23.

320 INPUT #3,A.B,C,
Storesin A, B, and C the next three values from the file that

was opened as #3. The comma after C creates a pending
input condition.

2:56 Reference Section

et

'
. . S L . Lt TR R . e e LT TR I
!-._.‘-qq._-,. fmﬁﬁﬁtuaﬂfhwﬂ:fjﬂ'?Tﬂ“nﬁﬁ _..-\._;._'! |:__:':“_"- e, Vi, --""-'r:-\."l.-' -'"'..-I‘: .. _-\-""-.'_"'_:;Tr'"'-. ALPEHATETCE NS U - ,_,...-!'_:. -I:-\-'E_
. kR - i ; o - . L - .- .

L I.'-_.-h_'.::-I-.l'r*ll?y.lf'_!t%i‘-l.-#l.ﬁ?

I S S B S e R VT

Examples
(Continued)

Cross Reference

The following program formats the medium in external
device number 2 (thereby destroying any data that was
previously on the medium), opens it in update m_ode, and
prints five values to the file MYFILE on the medium. The
values are then reread and displayed.

100 FORMAT 2

110 OPEN #1,”2 MYFILE”, INTERNAL, UPDATE
120 FOR A=1 TO 3

130 READ DATAOUT

140 PRINT #1,DATAQUT
Lines 120 through 140 read five records from the DATA

statement and write ther to file #1.

150 PRINT DATAQUT:" 1S WRITTEN TO FILE #1.":
PAUSE 1.5

160 NEXT A

170 RESTORE #1

180 FOR B=1 TO &

190 INPUT #1,DATAIN

200 PRINT DATAIN:"1S RECORD #",B.PAUSE 1.5

210 NEXT B

Lines 180 through 210 read the five records that were

written on file #1 and then display their values.

220 CLOSE #1, DELETE

Deletes the file.
230 DATA 15,30,72,36,94

CLOSE, INPUT (with keyboard), LINPUT, OPEN, PRINT,
RESTORE

Reference Section 257

INT

The INT function converts a number into an integer.

;
il .
] -
b
\‘J Format INT{numeric-expression)
i -
2 Description The INT function returns the largest integer less than or
' equal to rumeric-expression.
'! Examples 250 P=INT(3.999999999)
>ets P equal to 3.
470 DISPLAY AT(7), INT(4.0):PAUSE
Displays 4 in column 8.
610 K=INT(-3.0000001)
dets K equal to — 4.
|
qf,_"
"
E
|
|
E
i
is
w
2:-58 Reference Section

—

L
‘: . ﬂ "‘:: LR g == Cie . LRH TR Wy T =i
iz TR SR e e A L 2

ik

i
: I-:..'.. -
:‘é-
.I‘ "-
B
W

B e e o S T Pt i

b
i
;

- Example

Cross Reference

JO Subprogram

The 10 subprogram performs certain operations with peripherals
that are not built into TI-74 BASIC.

CALL IO (device,command]| status-variable))

The 10 subprogram addresses an external device to perform
a special control operation not available in TI-74 BASIC.
The control operations available with an external device
depend on the design of the device.

Proper use of this subprogram requires knowledge of
Input/output (I/0) data structures and specific peripheral
capabilities, Chapter 3 provides information about I/O
corunands that are available with the PC-324 printer.

Device 1s the number associated with the external device
and can be from 1 through 255

Command is a numeric code that specifies the operation to
be performed by the device.

Status-variable is a numeric variable in which information
regarding the result of the operation is stored. If no IO error
occurred, status-variable is zero. If an I/0 error occurred,
status-variable contains the corresponding error code.

The inclusion of a status-variable affects the computer’s
response to the occurrence of an I/O error. If an 1'O error
occurs when status-variable is included, no error message is
displayed and the error cannot be handled by ON ERROR. If
an error occurs when stafus-variable is omitted, the
message 1s displayed or the error can be handled by ON
ERROR.

140 CALL 1O(1,1)
Closes device 1. (A command code of 1 is a CLOSE
operation.)

ON ERROR

Reference Section 2.59

KEY Subprogram

Format

Description

Exarnpla

The KEY subprogram enables you to check whether or not a key
is being pressed. lf a key is pressed, the KEY subprogram detecis

which key it is.

CALL KEY(return-variable,status-variable)

The KEY subprogram scans the keyboard for input and
assigns the ASCII code of a key pressed to return-variable.
If no key is pressed, return-variable is set equal to 255. See
Appendix B for a list of the ASCII codes.

The value assigned to status-variable represents the status
of the scan. A value of 0 means no key is pressed. A value of
1 means a different key is pressed since the last time the
keyboard was scanned for input (e.g., since CALL KEY,
KEYS$, INPUT, LINPUT, or ACCEPT was last executed). A
value of — 1 means the same key is pressed.

The following program segment prompts twice for a key to
be pressed. To determine that the responses are distinct, the
status-variable is compared to 1 (S<>1)in lines 520 and 560,

500 PRINT “MORE ENTRIES? (Y OR N)”

510 CALL KEY(K,S)

520 IF S<>1 THEN 510

530 IF K=ASC(”Y") OR K=ASC(”y”) THEN 400
540 PRINT “END SESSION? (Y OR N)*

550 CALL KEY(K,S)

560 |IF S<>1 THEN 550

570 IF K=ASC(”Y”) OR K=ASC(”y”) THEN STOP

2-60 Reference Section

The KEY$ function enters a one-character string during program
execution.

KEY$

The KEY$ function halts program execution until a single
key is pressed. When a key is pressed, execution of the
program continues immediately and KEY$ returns a one-
character string that corresponds to the key pressed. Refer
to Appendix B for a list of the ASCII character codes.

If IBREAK] is pressed while KEY$ is waiting for a response,
the break occurs as usual.

The following program continues if Y is pressed and stops if
N is pressed.

100 PRINT ”Press Y to continue., N to stop”
110 A%=KEY$

120 IF A$="Y"” OR A$="y” THEN 140

130 IF A$="N” OR A$="n” THEN 150 ELSE 110
140 PRINT "Continue”:PAUSE 1.5 :GOTO 100
150 PRINT "Stop” :PAUSE

Reference Section 261

LEN

The LEN function returns a string’s length.

Format LEN(string-expression)
Description The LEN function returns the nuraber of charactersin
string-expression. A space counts as a character.
Examples 170 PRINT LEN(”ABCDE") :PAUSE
Prints 5.
230 X=LEN{"THIS IS A SENTENCE.")
Sets X equal to 19.
540 X$="THIS IS A SENTENCE." :X=LEN(X$)
Sets X equal to 19.
910 DISPLAY LEN(” ") :PAUSE
Displays O.
262 Reference Section

The LET keyword can begin a statement that assigns values to
variables.

[LET] numeric-variable], numeric-variable . . . |
= RUMETLC-LXPTESSTON

(LET] string-variable[,string-variable. .]
= String-expresson

The LET statement assigns the value of an expression to the
specified variable(s). The computer evaluates the
expression on the right and places the result into the
variable(s) on the left.

The keyword LET is optional,

If you list more than one variable, they must be separated
with commas.

All subscripts on the left are evaluated before any
assignments are made.

110 LET T=4
Sets T equal to 4.

170 X.Y,Z=12 4
Sets X, Y, and Zequal to 12.4.

200 A=3<5
Sets A equal to — 1 because it 1s true that 3 is less than 5.

350 L%$.D%,.B%="B"
Sets L$, D$, and B$ equalto ““B™".

Reference Section 263

ii .

LINPUT

m

The LINPUT statement assigns an input string or record to a
variable,

""—"-'_'—"_-—"_—_u'—_.__._.______

Formats

Description

Using LINPUT
with Files

LINPUT [input-prompt;string-variable

LINPUT (#file-number,[REC numeric-expression,)]
string-variable

The LINPUT statement assigns a string, an entire input
record, or the remainder of a pending input record to
string-variable. Unlike INPUT, LINPUT performs no editing
on the input data. Thus, all characters including commas,
leading and trailing spaces, semicolons, and quotation marks
are placed into string-variable.

Input-prompt is a string expression that must be followed
by a semicolon. If a string constant is used, it must be
enclosed in quotes. Input-prompt is displayed beginning at
the current display position as left by pending input/output
statements. If input-prompt is omitted, a question mark
followed by a space is used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than
30 characters, it is truncated to 30 characters.

LINPUT can be used to read display-type data from a file or
a device. File-number is the number of an open file. If the

‘specified file has pending input, the remainder of the

pending record is read. The message E7 Bad datais
displayed if the record or partial record is longer than 255
characters.

The optional REC clause may be used with devices that
support relative record (random access) files. Numeric-
expression specifies the record to be accessed. Refer to the
appropriate peripheral manual for more information
concerning relative files. Note that relative files cannot be
used with a cassette recorder.

2:64 Reference Section

ery 3 g

A

1",
=3
o . |:_ -
Bt~ - TG
. . s .._
. *
.~ i
PR
S L
- ._:'.-'.
A 1!:"_ .
g
e
_I'
i
e
wr

300 LINPUT L%
Causes the computer to display the question-mark prompt

and store the entered data into L$.

470 LINPUT “NAME: *:NM$
Causes the computer to display NAME - and store the
entered data into NM$.

470 LINPUT #3,PHONE$ ‘
Causes the computer to read a record from file #3 and assign
the record to PHONES$.

INPUT, OPEN, CLOSE, PRINT, RESTORE

Reference Section 2+65

LIST

Formats

Description

Examples

2-66

The LIST command enables you to view or print program lines.

LIST [{ine-group]
LIST “‘device-name’’ [line-group)

The LIST command begins a program listing. If line-group is
not included, the entire program is listed. When line-group
1s included, only those lines are listed. Line-group may
specify any of the following line ranges.

at

3 I ~: riptinn

Line-group Eftect

100 Lists line 100 only.

100 — Lists line 100 and all fellowing lines.
- 300 Lists line 300 and all preceding lines.
100 - 300 Lists line numbers 100 through 300,

inclusive.

When device-name is included, the lines are listed to the
specified device. If device-name is omitted, the lines are
shown in the display. During a listing to the display, the

lines may be edited.

To suspend a listing to a device, press and hold any key until
the listing stops. Pressing the key again resumes the listing.
Pressing [BREAK] terminates the listing to the display or a

. device. Pressing [t] terminates only a listing to the display.

LIST 100-200
Lists all lines from 100 through 200 to the display.

LIST "12”
Lists the entire program to peripheral device 12 {(a
compatible printer).

LIST *50.R=C¥, -200
Lasts all lines up to and including line 200 to device 50.

Reference Section

Zi. :;' mples

$pross Reference

The LN function computes an expression’s natural logarithm.

LN(numeric-expression)

The LN function returns the natural logarithm of rumeric-
expression. Numeric-expression must be greater than zero
or the error message E23 Bad argument is displayed.

The LN function is the inverse of the EXFP function.

710 PRINT LN(3.4):PAUSE
Prints the natural logarithm of 3.4, whichi1s 1 .223775432.

850 X=LN(EXP(2.7))
Sets X equal to the natural logarithm of e raised to the 2.7
power, which equals 2.7.

910 S=LN(SQR(T))
Sets S equal to the natural logarithm of the square root of
the value of T.

EXP, LOG

Reference Section 2-67

The NEW command prepares the computer for a new program by
deleting the program and variables currently in memory.

Format LOG(numeric-expression) NEW

Description The LOG function returns the common logarithm of NEW ALL

numeric-expression. Numeric-expression must be greater
than zero or the error message E23 Bad argument is
displayed.

The NEW command closes any open files and then deletes
the program and variables currently in memory.

The NEW ALL command performs the following

Examples 150 PRINT LOG(3.4) :PAUSE operations:

Prints the common logarithm of 3.4, whichis . 531478917.

» Deletes the current program and variables in memory.

230 S=LOG(SQR(TY)
Sets S equal to the common logarithm of the square root of | & .

the value of T. Closes any open files.

Gmsa Reference LN » (lears USEI"EISSignEd Stril'lgs.

» (Cancels any expansion of memory implemented by
CALL ADDMEM.

» Sets the angle units to radians.

Py

2:68 Reference Section Reference Section 2.69

NEXT

_

Format

Description

Example

Cross Reference

The NEXT statement is used in conjunction with a FOR TO STEP
statement to form a loop.

NEXT [control-variable]

The NEXT statement increments a control-variable during
the execution of a FOR/NEXT loop. NEXT also sends
execution back to its corresponding FOR TO STEP
statement unless control-variable is exceeded. A loop that
begins with FOR TO STEP must end with NEXT.

If control-variable is included, it must be the sarme as
control-variable in the FOR TO STEP statement. If control-
variable is omitted, NEXT is paired with the most recent
unmatched FOR TO STEP statement. It is good
programming practice to include control-variable.

When FOR/NEXT loops are nested, the NEXT staternent for
the inside loop must appear before the NEXT statement for
the outside loop.

See FOR TO STEP for a description of the looping process.

The program below illustrates a use of the NEXT statement.
The values printed are 3¢ and -2.

100 TOTAL=0
110 FOR COUNT=10 TO O STEP -2
120 TOTAL=TOTAL+COUNT

130 NEXT COUNT

140 PRINT TOTAL ; COUNT : PAUSE

FOR TO STEP

2.70 Reference Section

5 Examples

% Cross Reference

The NUMBER (or NUM) command causes automatic line
numbering during the entry of program lines.

NUMBER [¢nitial-line] [,increment)

The NUMBER (or NUM) command generates sequenced line
numbers. A line number is displayed with a trailing space
for convenience in entering a program line. After youtype a
line and press [ENTER), the line is stored in memory and the

next line number is displayed.

If initial-line and increment are not specified, the line
numbers start at 100 and increase in increments of 10.
Otherwise, lines are numbered according to the initial-line
and increment specified. If a generated line number
specifies a line that already exists, that line 15 display(-:-:d and
may then be replaced or changed using the edit functions. If
a generated line number is altered, the sequence of line
numbers continues from the new line number.

To terminate the numbering process, press [ENTER] when a
line comes up with no statements on it, or press {BREAK]

when any line is displayed.

NUM 110 _ |
Instructs the computer to number starting at 110 with

increments of 10.

NUM 105,55 | | |
Instructs the computer to number starting at line 105 with

increments of b,

RENUMBER

Reference Section 2:71

NUMERIC

“I-

m‘

Format

Description

Example

Cross Reference

_The N L!MERIC tunction tests whether or not a string expression
is a valid representation of a numeric constant. This test enables

you to prevent VAL from using an invalid representation of a
namber,

NUMERIC(string-expression)

Thf_: NUMERIC function returns a value of — 1 (true) if
String-expression is a valid numeric constant, and 0 (false) if
string-expression 18 not a valid numeric constant.

Leading and trailing blanks in string-expression are 1gnored.
NUMERIC can be used to determine if the VAL function can

work correctly on a string meant to represent a number.

The following program segment determines if an entry from
the keyboard is a valid representation of a numeric
constant. If not, an error message is displayed until data is
reentered. If the data can be represented as a numeric
constant, its numeric value is stored in variable A.

100 LINPUT "ENTER VALUE: ”:A$

110 IF NOT NUMERIC(A$) THEN LINPUT “ERROR.

REENTER: 7;A$:GOTO 110
120 A=VAL(A$%)

VAL

272 Reference Section

T
-
e

Format

Description

Exampies

* Cross Reference

The OLD command loads a program from an extemal device into
memory.

QLD *‘device. file-name’’

The OLD command closes all open files, removes the
program currently in memory, and loads a stored program.
A BASIC program can be stored on device. file-name with
the SAVE command.

Device. file-name identifies the device where the prograrm is
stored and the name of the file. Device is the number
associated with the physical device and can be from 1
through 255. File-name identifies the particular file. Refer
to a peripheral manual for the device code for that
peripheral device and for specific information about the
form of file-name. Refer to Chapter 3 for information about

using a cassette recorder.

Note; You cannot retrieve information from a cartridge
with the OLD command. Also, you cannot load a data file
with the OLD command. H file-name specifies a data file
rather than a program file, it may be necessary to press the
[RESET] key.

OLD *2 . PROGRAM1”
Loads the file PROGRAMI1 into the computer’'s memory
from peripheral device 2.

oLD "1."

Loads the next file into the computer’'s memory from
peripheral device 1, the cassette recorder. If the next file 1s
not a program file, the T1-74 displays an error.

GET, INPUT (with files), PUT, SAVE, VERIFY

Reference Section 273

ON BREAK

m

Formats

Description

The ON BREAK statement determines the action taken when a
breakpoint occurs.

ON BREAK STOP
ON BREAK NEXT
ON BREAK ERROR

The ON BREAK statement sets the computer to respond to
a breakpoint according to the option selected.

» ON BREAK STOP selects the normal function of BREAK,
which is to halt program execution and display the
standard breakpoeint message. The RUN command also
selects this function of breakpoints.

» ON BREAK NEXT causes breakpoints to be ignored.
When a breakpoint that immediately precedes a line
number is encountered, the breakpoint is ignored and
the program line is executed. The [BREAK] key is also
ignored. However, a BREAK statement that does not
contain a line-number-list halts the program even
though ON BREAK NEXT is in effect. ON BREAK NEXT
can be used to ignore breakpoints that you have

specified in a program for debugging purposes.

Note: Because the [BREAK] key is ignored, the [RESET]
key must be pressed to stop a program that does not stop
normally.

» ON BREAK ERROR causes breakpoints to be treated as
- errors, thus allowing the ON ERROR statement to
process breakpoints. See ON ERROR for more
information.

The ON BREAK statement remains in effect until another
ON BREAK statement changes it. When a subprogram ends,
the ON BREAK status in effect when the subprogram was
called is again in effect.

274 Reference Section

Bross Reference

The program below illustrates the use of ON BREAK. When
the message W29 at 120 Break is displayed, resume
execution with the CON command.

100 BREAK 140

Sets a breakpoint in line 140.

110 ON BREAK NEXT

Sets breakpoint handling to ignore breakpoints.

120 BREAK

A breakpoint oceurs in line 120 in spite of line 110. Press
[CLR], type CON, and press {ENTER].

130 FOR A=1 TO 500

140 PRINT 7 (BREAK) IS DISABLED”

150 NEXT A

The IBREAK] key does not work while lines 130 through 150
are being executed.

160 ON BREAK STOP

Restores the normal use of [BREAK].
170 FOR A=1 TQ 50

180 PRINT ”“NOW (BREAK) WORKS”
190 NEXT A

The [BREAK] key again works while lines 170 through 190
are being executed.

BREAK, ON ERROR

Reference Section 275

i

ON ERROR
et

o T T, T T
-

The ON ERROR statement determines the action taken when an
error occurs during the execution of a program.

_-__.—-—-—_l_'_;___'—_-____—

Formats

Description

2:76

ON ERROR STOP
ON ERROR line-number

After the ON ERROR statement is executed, any errors that
occur are handled according to the option selected.

» The ON ERROR STOP statement selects the normal way
of handling errors, which is to halt program execution
and print a descriptive error message. The RUN
command also selects this way of handling errors.

» The ON ERROR line-number staternent transfers control
to the specified line when an error occurs, Line-number
must be the beginning of an error-processing subroutine.
Once an error has occurred and control has been
transferred, error handling reverts to ON ERROR STOP.

If the ON BREAK ERROR option was selected, it 1s
changed to ON BREAK NEXT. For an error-processing
subroutine to handle any new errors, an ON ERROR [ire-

number must be executed again.

The ON ERROR statement remains in effect until another
ON ERROR statement changes it. If a subprogram ends, and
no errors occurred while the subprogram was executing, the
ON ERROR status in effect when the subprogram was called
is again in effect. If an error occurred in a subprogram, any
changes in the error-handling status made by the error
handler is in effect when the subprogram ends.

The main program and subprograms can share the same
error-processing subroutine, which is called by means of the

line-number in the ON ERROR statment. The main program
and subprograms cannot share subroutines called by

GOSUB.

Reference Section

Example

Cross Reference

The program below illustrates the use of ON ERROR.

100 ON ERROR 150

Causes any error to pass control to line 150
110 X$="A"

120 X=VAL (X$)

Causes an error.

130G PRINT X;"SQUARED 1S”:X*X:

130 ooon Q 1S”; X*X:PAUSE 2

150 REM ERROR SUBROUT INE

160 ON ERROR 220

Causes the next error to pass control to line 220
170 CALL ERR(CODE,TYPE,FILE.LINE)
Determines the error using CALL ERR.

180 IF LINE<>120 THEN RETURN 220

Transfers control to line 220 if the error i)
orisn
expected line. otinthe

190 IF CODE<>23 THEN RETURN 220

Transfers control to line 220 if the error is not the one
expected.
200 X$="5H"

Returns control to the line in which
the erro
220 REM UNKNOWN ERROR roceured

230 PRINT "ERROR”;CODE:” IN LINE" , L INE : PAUSE
Reports the nature of the unexpected error and the
program stops.

ON BREAK, ON WARNING, RETURN (with ON ERROR)

Reference Section 277

ON GOSUB
__—__—___-———_—_

The ON GOSUB statement sends execution to a choice of
subroutines.

H--

Format ON numeric-expression GOSUB line-numberl
[,line-number2] [, . .]

The ON GOSUB statement determines which subroutine to

Description
execute by evaluating numeric-expression.

» [f the value of rnumeric-expressionis 1, the subroutine
starting at line-numberl is executed; if 2, the subroutine
starting at line-number? is executed, and so 1 orth.

» [f numeric-expression is a non-integer, it is rounded.

» If numeric-expression is zero, negative, or larger than
the list of line numbers, the error message E4 Bad
value is displayed.

Fach line number must be the first statement of a
subroutine. After the RETURN statement of the subroutine
is executed, control returns to the statement following ON
GOSUB. ON GOSUB may not be used to transfer control into

or out of a subprogram.

140 ON X GOSUB 1000, 2000,300
Transfers control to 1000if X is 1, 2000 if X is 2, and 3001f X

is 3.

Examples

240 ON P-4 GOSUB 200,250,300,800,170
Transfers control to 200if P—4is 1 (P isb), 250if P-4 is 2,
300ifP-4is3,800ifP-4is4,and 170if P~-41s5.

Cross Reference GOSUB, RETURN (with GOSUB)

278 Reference Section

The ON GOTO statement sends execution to a choice of lines

within a program.

Format

Description

Examples

Cross Reference

ON numeric-expression GOTO line-numberl
[[{tne-numberl] [, . .]

The ON GOTO statement determines where to transfer
control by evaluating numeric-expression.

» If the value of numeric-expression is 1, control is
tran_lsferred to line-numberl; if 2, control is transferred
to line-number?, and so forth.

» I numeric-expression is a non-integer, it is rounded.
» [f numeric-expression is zero, negative, or greater than

the list of line numbers, the error message E4 Bad
value is displayed.

ON GOTO may not be used to transfer control into or out of
a subprogram.

130 ON X GOTO 100G, 2000 . 300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if X
1S 3. |

210 ON P-4 GOTO 200,250,300.800,170
TraI}sfers control to 200 f P-4is 1 (Pis 5), 250if P-4 is 2,
3001 fP-41s3,8}if P-4is4, and 170if P-4 is 5.

GOTO

Reterence Section 2.79

ON WARNING

#

The ON WARNING statement determines the effect a waming
has during program execution.

Formats

ON WARNING PRINT
ON WARNING NEXT
ON WARNING ERROR

Description The ON WARNING statement sets the computer to respond

2-80

to a warning according to the option selected.

» ON WARNING PRINT selects the normal use of
warnings, which is to print a descriptive warning
message and continue program execution after the
[ENTERI or ICLR] key is pressed. The RUN command also
selects this option of ON WARNING.

» ON WARNING NEXT causes the program to continue
execution without printing any message.

» ON WARNING ERROR causes the occurrence of a
warning to be treated as an error, thus allowing the ON
ERROR statement to process warnings.

The ON WARNING statement remains in effect until

another ON WARNING statement changes it. When a
subprogram ends, the ON WARNING status in effect when

the subprogram was called is again in effect.

Reference Section

PR

& Cross Reference

Example

The program below illustrates the use of ON WARNING.

100 ON WARNING NEXT

Sets warning handling to go to the next statement.

110 PRINT 110,5/0:PAUSE

Prints the result without any message.

120 ON WARNING PRINT

Sets warning handling to the normal option, which is to
print a message and enable execution to continue when a

warning occurs.
130 PRINT 130,5/0:PAUSE

Prints the warning. When [ENTER] or [CLR] is pressed,
prints 130 followed by the value of 5/0.
140 ON WARNING ERROR

Sets warning handling to treat warnings as errors.
150 PRINT 150,5/0:PAUSE

Prints the warning message and treats the warning as an
error. Program execution stops.

Note: When you clear the error condition, the display is
cleared. However, you can press [SHIFT] [PB] to see the
printed value 150. |

ON ERROR

Reference Section - 2+81

OPEN

Fomat

———y — —

:::" 2-82

w

Description

The OPEN statement sets up a link to a peripheral device for the
purpose of transferring data.

OPEN #file-number, ‘' device. file-name” [ﬁie—arganiwiian]
[file-type) [,record-length] [,open-mode]

The OPEN statement enables a BASIC program to use data
files and peripheral devices by providing a link between
filenumber and a file or device. In setting up this link, the
OPEN statement specifies how the file or device can be
used (for input or output) and how the file is orgamzed.

The OPEN statement must be executed before any BASIC
statement in a program attempts to use a file or device
requiring a file number. If an OPEN statement references a
file that already exists, the file-orgarization, file-type, and
record-length attributes in the OPEN statement must be the
same as those attributes of the file. If an OPEN statement
references a file that is already open, an error occurs.

File-number is a number from 1 through 255 that the OPEN
statement associates with a file or device. Thus file-number
is used by all the input/output statements that access the
file or device. File-number is rounded to the nearest
integer. File number 0 is the keyboard and display of the
computer. It cannot be used for other files and is always

open.

Device. file-name is an actual peripheral device number and
other device-dependent information. Device. file-name may
be a string expression. Device is the number associated with
the physical device and can be from 1 through 255, File-
name supplies information to the peripheral device for the
OPEN statement. For example, with an external storage
device, file-name specifies the name of the file. With other
devices, file-name specifies options such as parity, data
rate, etc. Refer to the peripheral manuals for the device
code for each peripheral device and for specific information
about the form of file-name.

Reference Section

i

File Attributes

The file attributes listed below may be in any order or may
be omitted. If an attribute is omitted, defaults are used.

File-organization specifies either a sequential or relative
(random access) file. Records in a sequential file are read or
written in sequence from beginning to end. Records in a
RELATIVE (or random access) file can be read or written in
any record order, including sequentially. The default file-
organization 1s sequential; therefore, omit file-
organization to indicate sequential files, or specify
RELATIVE for random-access files.

File-type may be either DISPLAY or INTERNAL. DISPLAY
spectfies that the data is written in ASCII format.
INTERNAL specifies that the data is written in binary
format. Binary records take up less space, are processed
more quickly by the computer, and are more efficient for
recording data on external storage devices. However, if the
information is going to be printed or displayed for people to
read, DISPLAY format should be used. If file-type is
omitted, DISPLAY is assumed.

Record-length consists of the word VARIABLE followed by
a numeric expression that specifies the maximum record
length for the file. The maximum record length is
dependent on the device used. If record-length is omitted,
the peripheral device specifies a default record length.

Open-mode instructs the computer to process the file in
UPDATE, INPUT, OUTPUT, or APPEND mode. UPDATE
specifies that data may be both read from and written to the
file. INPUT specifies that data may only be read from the
file. QUTPUT specifies that data may only be written to the
file. APPEND specifies that data may only be written at the
end of the file. If opern-mode is omitted, UPDATE is
assumed.

Note that if a file already exists on external storage,

- specifying CUTPUT mode results in new data being written

over the existing data.

Reference Section 2.83

OPEN (Continued)

Opening Files to
a Cassetle Tape
Recorder

Examples

Cross Reference

The cassette interface is designated as device 1 m an OPEN
statement. The attributes for a cassette recorder file are as
follows.

» Files must be sequential.

» The default record length is 256 bytes.

» Files must have an open-mode of INPUT or OUTPUT.
» Files must be DISPLAY file-type.

Note that you cannot use the RESTORE or DELETE
commands, the UPDATE or APPEND open-mode, or
INTERNAL file-type with files on a cassette recorder.

Refer to Chapter 3 for instructions on using a cassette
recorder for storage and retrieval of files.

100 OPEN #23,72.X", INTERNAL , UPDATE

Opens the file named ‘““X’’ on peripheral device 2 and
enables any input/output statement to access the file by
using the number 23. The type of the file is INTERNAL.
Because the file is opened in UPDATE mode, data can be
both read from and written to the file.

150 OPEN #243 A3%&" ABC”, INTERNAL
If A$ equals “‘2"’, opens a file on device 2 with a name of
ABC. The file type is INTERNAL, UPDATE mode is

assumed, and the device specifies the default record length.

200 OPEN #1.71 DATAl” ,DISPLAY,QUTPUT

Opens the file named “"DATA1" on a cassette recorder. The
type of the file is DISPLAY. Because the file is opened in
OUTPUT mode, data can only be written to the file.

CLOSE, DELETE, INPUT, LINPUT, PRINT, RESTORE

2.84 Reference Section

f &

The PAUSE statement allows displayed information to stay in the
display by suspending program execution either for a fixed
duration or indefinitely.

4 Formats

. Description

PAUSE numeric-expression
PAUSE
PAUSE ALL

The PAUSE statement suspends program execution either
for a specified number of seconds or until the [CLR] or
[ENTER] key is pressed. The three forms of the PAUSE
statement are described below.

» PAUSE numertc-expression suspends program
execution for the number of seconds represented by the
absolute value of numeric-expression. lf numeric-
expression is positive, the timed pause can be overridden
by pressing the [ENTERI or [CLRl key. If numeric-
expresston 1s negative, the timed pause can only be
overridden by pressing the [BREAK] key.

A timed pause is performed in tenths of a second. If
numeric-expression is less than .1, the program does not
pause. During a timed pause, the cursor is not displayed
and the display cannot be scrolled.

» PAUSE (without numeric-expression or ALL) performs
an indefinite pause. The underline cursor is displayed in
column one to Indicate an indefinite pause is occuiring.
The cursor control keys can then be used to view the
contents of the 80-column line. Execution cnntmues
when either [ENTER] or ICLR] is pressed.

» The PAUSE ALL statement suspends program execution
each time a complete output line is sent to the display.
Execution continues when [CLR] or [ENTER] is pressed.

PAUSE ALL remains in effect until a timed PAUSE of
length zero is executed.

PAUSE ALL remains in effect when a subprogram is
called. If the subprogram includes a PAUSE (statement,
PAUSE ALL is again in effect when the subprogram
ends.

Reference Section 2+85

Examples

Cross Reference

PAUSE {Continued)

120 PAUSE 2.2
Halts execution for 2.2 seconds or until the [CLR] or [ENTER]
key is pressed.

190 PAUSE
Halts execution until the [CLR] or [ENTERI key is pressed.

The following program changes degrees Fahrenheit to
degrees Celsius.

100 PRINT "ENTER DEG: 7*;

Prints the prompt ENTER DEG: . The pending print,

created by the semicolon at the end of the PRINT

statement, causes the prompt to be displayed until data is

entered.

110 ACCEPT DG

120 PRINT DG;”"DEG =";(DG-32)*5/9; "DEGREES C”:
PAUSE

Prints the answer. The PAUSE statement that follows the

PRINT statement causes the answer to be displayed until

the [ENTER] or [CLR] key is pressed.

130 GOTO 100

The following program demonstrates the effect of PAUSE
ALL.

100 PAUSE ALL
110 PRINT "FIRST PAUSE” :PAUSE 1.1

Displays FIRST PAUSE until the [ENTER] or ICLR] key is
pressed. Note that the timed pause is performed after you
press [ENTER!} or [CLR].

120 PRINT “SECOND PAUSE”

Displays SECOND PAUSE until the [ENTER] or [CLR} key is
pressed.

130 PAUSE O:PRINT *THIRD PAUSE” :PAUSE .9

Cancels the automatic pause and displays THIRD PAUSE f{or

approximately .9 seconds.

DISPLAY, PRINT

: ;;i 2.86 Reference Section

Pl represents the numeric constant r, the ratio of a circle’s
circumference to its diameter.

'M

Format

Description

Example

Pl

The PI function returns the value of m accurate to 13 digits,
3.141592653590.

130 VOLUME=4/3*PI*R ~3 * |
Sets VOLUME equal to four-thirds times PI times the radius

cubed, which is the volume of a sphere with a radius of R.

Reference Section 2.87

POS

e —————— PRINT (with display)

m

i
-

;

The POS function computes the starting position of a string This version of the PRINT statement places information in the

contained within another string. display
Fo ; : : . 5
rmat POS(stringl, string?2, numeric-expression) & Formats PRINT {USING line-number,] [print-list)
s g . RINT {USING siring- o, ni-list
Description The POS function returns the starting position of the first B d v string-expression,] Lprint-isi
occurrence of string2 in stringl. The search begins at the 4 Description The PRINT statement is used to format and write data to
position specified by numeric-expression. If no match is __ the display with the following options.

found, the function returns a value of zero.
Ex _ Y Santy n » USING—may be used to specify an exact format for the
amples Sets X s TAT 1) | o items in print-list. Refer to IMAGE and USING for a
equal to 2 because A is the second letter in PAN. - description of format definition and its effect on the

140 Y=POS ("APAN" "A" 2) output of the PRINT statement.

ie]_:ES AE equal to 3 because the A in the third position in ¥] » Print-list—consists of print items and print separators, A
e Is the first occurrence of A in the portion of APAN 5 print item can be a numeric expression, a string
at was searched. expression, or a TAB function. A print separator can be a
POANY 7 At = comma or a semicolon, which determines the position of
é;; ZZh PD:I(PANT, "A", 3) : r 3 the next print item in the display. If priné-list is omitted,
equal to () because A was not in the part of PAN that b the PRINT statement clears the display.
was searched. = 3
" v ® Print ltems When a PRINT statement is executed, the values of the
ggti RR —F'O;(t PE)AES(? N, "AN” 1) . expressions in print-tist are displayed in order from left to
equal to ause the first occurence of AN starts B right in the positions determined by the print separators and

with the A in the fifth position in PABNAN. B TAB functions.

» A string expression is evaluated to produce a string
result. A string constant must be enclosed in quotation
marks. Blank spaces are not inserted before or after a

string. To print a blank space before or after a string,
include it in the string or insert it separately with quotes.

» A numeric expression is evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign), and negative numbers are
printed with a leading minus sign.

» The TAB function specifies the starting position for the
next item in print-list. See TAB for more information.

2.88 R i
eference Section 1 Reference Section 2-89

PRINT (with display) (Continued)

Print Items
{Continued)

Print Separators

Pending Print
Conditions

2+90

If a print item is longer than the remainder of the current
lIine, the line 1s cleared and the print item is displayed
starting in column 1. If a numeric print item fits on the
current line without its trailing space, it is printed on the
current line. If a print item is longer than 80 characters, you
can only view the information by including a PAUSE ALL
statement prior to the ouput line. You can then view the
print item one line at a time, pressing [ENTER] or {CLR] to
display the next segment.

You must place at least one separator between adjacent
print items. Multiple print separators in a PRINT statement
are evaluated from left to right.

» The semicolon prints the next item in the print-list
immediately after the last print item, with no extra
spaces between the values.

» The comma prints the hext print item at the beginning of
the next print field. The first five print fields are 15
characters long, beginning in columns 1, 16, 31, 46, and
61. The last print field begins in column 76, completing
the 80-column line. If the current column position is past
the start of the last print field, the comma clears the line
and displays the next printed item starting at column 1.

Using a comma or a semicolon after print-list creates a
pending print condition. A pending print condition allows
information from a subsequent input/output statement to
be printed on the current line. If a comma ends the PRINT
statement, the computer spaces over to the start of the next
field for the next print item. If a semicolon ends the
statement, the computer starts the next print item at the
next position unless the subsequent input/output statement
changes the position.

Reference Section

& Conditions

lipending Print

ontinued)

-1 '..

£ Numeric Formats

A pending print condition can be used to create an input
prompt for the ACCEPT, INPUT (with display), or LINPUT
statement. The next INPUT or LINPUT statement places its
prompt after the pending print item. See ACCEPT, INPUT
(with display), and LINPUT for mere information.

If print-list is not followed by a comma or a semicolon, the
line is cleared when a subsequent input/output statement is
executed. Therefore, the print items of the next
input/output statement begin in column 1.

Numbers are printed in either normal decimal form or
scientific notation. Scientific notation 1s used for very small

or very large numbers.

When a number is printed in normal decimal form, the
following conventions are observed.

= Integers are printed without a decimal point.
» Non-integers are printed with a decimal point. Trailing
zeros in the fractional part are omitted. If the number

has more than ten significant digits, the value is rounded
to ten digits.

» A number whose absolute value is less than one is
printed without a zero to the left of the decimal point.

A nuruber printed in scientific notation is in the following
form.

mantissa E exponent

Reference Section 2-91

Numeric Formats
(Continued)

Examples

Cross Reference

PRINT {(with dispiay) (Continued)

When a number 1s printed in scientific notation, the
following conventions are observed.

» The mantissa is printed with seven or fewer digits with
one digit always to the left of the decimal.

» Trailing zeros are omitted in the fractional part of the
mantissa.

» The exponent is displayed with a plus or minus sign
followed by a two- or three-digit exponent.

» When the exponent is two digits, the mantissa is imited
to seven digits. When the exponent is three digits, the
mantissa is limited to six digits. When necessary, the

mantissa 1s rounded to the appropriate number of digits.

100 PRINT
Prints a blank line.

210 PRINT "THE ANSWER (S7 ; ANSWER : PAUSE
Prints THE ANSWER | S imumediately followed by the value

of ANSWER.

320 PRINT X.Y/2:PAUSE
Prints the value of X and in the next field the value of Y/2.

450 PRINT "NAME: *;

460 ACCEPT N$%
Prints NAME : and accepts the entry after the prompt.

ACCEPT, DISPLAY, IMAGE, INPUT, LINPUT, PAUSE,
TAB, USING |

297 Reference Section

PRINT (with files)

The PRINT statement is used with files to send data to a file or a
device.

PRINT #file-number|{,REC numeric-expression]
[LUSING line-number] [,print-list]

PRINT #file-number[,REC numeric-expression)
[,USING string-expression) {,print-list]

The PRINT statement may be used to format and write data
to a file or device.

File-number is a number from 0 through 255 that refers to
an open file or device. The file must have been opened in
OUTPUT, UPDATE, or APPEND mode. File-number 0
refers to the display, which is always open. File-number is
rounded to the nearest integer.

The following options may be used in the PRINT statement.

» REC numeric-expression—may be included only when
Jile-number refers to a RELATIVE record file. Refer to
the peripheral manuals for information about
RELATIVE record files and the proper use of REC.

Numeric-expression is evaluated to designate the
specific record number of the file to which to write.

> USING—specifies an exact format for a DISPLAY-type
file. Refer to the IMAGE and USING sections for a
description of format definition and its effect upon the
PRINT statement. Including USING in a reference to an
INTERNAL-type data file results in an error.

> Pront-list—consists of print items and print separators.
Print items are numeric and string expressions and TAB
functions. Print separators are commas or semicolons
that indicate the position of print items in the record.

Print-list is interpreted in order from left to right. The
form of the output depends upon the type (DISPLAY or

INTERNAL) of the file or device. See OPEN for a
description of file-type.

Reference Section 2-93

- == K. L L B, o b R o L e o 2 [
- - f= . - . . & TE= s P -W_ n -
- — - w . -

PRINT (with files) (Continued)

H

e

Options
(Continued)

DISPLAY-type
Files

When print-list is omitted and there s no pending
record, the result depends upon the file type. If the file is
DISPLAY-type, the PRINT statement writes a blank (zero
length) record. If the file is INTERNAL-type, an error
occurs because INTERNAL-type files do not support zero
length records.

During execution of a PRINT statement that referstoa
DISPLAY-type file, print-list is evaluated as follows.

» String expressions are evaluated to produce a string
result. String constants must be enclosed in quotation
marks. Blank spaces are not inserted before or after a
string. To print a blank space before or after a string,
include it in the string or insert it separately with quotes.

» Numeric expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

» The TAB function specifies the starting position In the
record for the next itera in print-list. See TAB for more

information.

You must place at least one print separator between
adjacent print items. Multiple print separators in a PRINT
statement are evaluated from left to right.

» The semicolon writes the next item in the prind-list
immediately after the last print item, with no extra
spaces between the values.

» The comma writes the next print item at the beginning of
the next print field. The print fields are 15 characters
long and are located at colurns 1, 16, 31, and so forth. If
the current column position is past the start of the last
print field, the comma causes the next printed item to be

printed in the next record.

2.94 Reference Section

'I _:D|SPLAY-type
EFiles

-{Continued)

-'jleTEHNAL-type
s

If a print item is longer than the remainder of the current
record, the current record is written without that item, and
the print item is written at the start of the next record. If a
numeric print item fits in the current record without its
trailing space, it is written in the cwrrent record. If a print
item is longer than the record length, it is divided into
segments that are the length of the record until the last
segment is the length of the record or less. The segments are
then written in successive records.

During execution of a PRINT statement that refers to an
INTERNAL-type file or device, print-list is evaluated as
follows.

» String expressions are evaluated and written in the
record in internal string representation.

» Numeric expressions are evaluated and written in the
record in internal numeric representation.

» The TAB function causes an error.

You must place at least one print separator between
adjacent print items. Multiple print separators in a PRINT
statement are evaluated from left to right.

» The semicolon writes the next print item immediately
after the last print item, with no extra spaces between
the values.

» The comma functions exactly the same as the semicolon
separator.

If a print item is longer than the remainder of the current
record, the current record is written without that item, and
the print item is written at the start of the next record. If a
print item is longer than the record length, an error occurs.

Reference Section 295

PRINT (with files) (Continued)
—I—I___-_l———_-_,

Pending Print
Conditions

o — - s mEm = = - " - = m 23 ow N b bl —— -
A — - e s - e ——— - T e = —_——— e . = = .t f— L E i e s amiman o . =i — T . - T LT T ™ T -+ —
- " " . n— o S === - - - - . . . R L - - - Py b =, - - - - h s m e P . b -
o i =t t, o R = - FETr— - e e . R) Ea— T me J-—O=) LT Ca— PEY-chb el . i Bl e
. L E . f———— =- K —- e . Lot e o= S . [
mmm e re el - -—— - = - o il — —_— [R— —— - - - . = - A T [T ' . - = ' . I . LT T N
_ .. == 5 S ST e -=. 7L o B n L . ; —_ .l
- N - = ST - T ——— —— = B — X r - 2 - 0 L] Lol btk S = = e ..) . . e
. - . === - = = — —C—— - - iy - . - a s = - - 3
— . = — e ——— — = . —= e L Ll e m . T — —_— .
- - T m = —— - o = — — — . . Tte _ . =

Using a commma or a semicolon after print-list creates a
pending print condition. If the print-list ends with a comma
or semicolon, the current record is not written. If a commayg
ended the PRINT statement, the computer advances to the
start of the next field. If a semicolon ended the statement.
the next cutput statement that accesses this file writes data
on this same record, beginning at the current position unless
the statement changes the position.

When prind-list is omitted and there is a pending output
record, the PRINT statement writes the pending record.

If print-list ends without a comma or a semicolon, the
record is immediately written to the file. The next
Input/output statement that accesses the file begins a new
record.

2:96 Reference Section

amples

::' .Cross Reference

150 PRINT #32 A ,B,C,

Causes the values of A, B, and C to be written to the next
record of the file that was opened as number 32. The final
cormma creates a pending print condition. The next PRINT
statement accessing file #32 is written to the same record as
this PRINT statement.

The program below writes data to a file.

100 OPEN #5.,"1 _MYPROG” ,DISPLAY ,OUTPUT
Opens file number 5. MYPROG is created on the cassette
tape in the recorder.

110 DIM A(50)

Dimensions an array for 51 values.

120 B=0

Initializes the summation variable.

130 FOR J=0 TO 50

Lines 130 through 180 facilitate data input.

140 PRINT "ENTER VALUE”:

150 ACCEPT A(J)

160 B=B+A(J)

170 PRINT #5, A{(J):

Value of A(J) is written to the file.

180 NEXT J

190 PRINT #5,B

Value of summmation variable is written to the the file,
200 CLOSE #5

IMAGE, INPUT (with files}, OPEN, TAB, USING

Reference Section 297

2-98

PUT Subprogram

m

Format

Description

Examples

Cross Reference

The PUT subprogram sends the contents of system rnemory {o a
RAM cartridge.

&

CALL PUT (image-number)

The PUT subprogram stores a copy of the system RAM
image in an 8K Constant Memory cartridge. The term
“image’’ applies to all contents of the 8K system RAM,
including program lines, variables, and unused space.

The image-number can be 1 or — 1. The 1 causes the
memory image to be copied into the cartridge and the —1
causes an exchange of memory images. This option enables
you to store the program from memory while retrieving a

cartridge program.

As the cartridge contents are exchanged with memory, the
computer checks to see that the cartridge contains an image
of system memory. If not, the computer returns an error

message.

CALL PUT(1)
Copies the system RAM image into the cartridge.

CALL PUT(-1)
Exchanges the cartridge image with the system RAM.

GET, ADDMEM

Reference Section

Fxamples

Pross Reference

The RAD statement sets the units of angle calculations to

radians.

RAD
The RAD statement sets the angle units to radians until you:

» Enter DEG or RAD as a command or statement to change
the units.

» Change the angle setting in CALC mode.

Entering the NEW ALL command or initializing the system
automatically sets the angle units to RAD.

100 RAD
Selects the RAD angle setting.

200 RAD:PRINT COS(PI1/2) :PAUSE
Prints O (the cosine of n/2 radians).

DEG, GRAD

Reference Section 2.99

RANDOMIZE

m

The RANDOMIZE statement randomizes the sequence of random
numbers generated by the RND function.

[

Format

Description

Exampile

Cross Reference

2-100

RANDOMIZE {rumeric-expression)

The RANDOMIZE statement sets the random humber
generator to an unpredictable sequence.

If RANDOMIZE is followed by numeric-expression, the
same sequence of random numbers is produced each time
the statement is executed with that value. Different values
produce different sequences.

The program below accepts a value for numeric-expression
and prints the first 10 random numbers obtained using the
RND function. Press [BREAK] to stop the program.

100 INPUT "SEED:
110 RANDOMIZE S
120 FOR A=1 TO 10:PRINT A;RND:PAUSE 1.1
130 NEXT A

140 GOTO 100

H;S

RND

Reference Section

at

Pescription

@Cross Reference

The READ statement is used with the DATA statement to assign
values to variables.

READ variable-list

The READ statement assigns a constant listed in a DATA
statement to the corresponding variable in variable-list.

Vartable-list consists of string and numeric variables, either
subscripted or unsubscripted, separated by commas. The
value from the DATA statement must be the same type as
the variable to which it is assigned in READ. Note that a
number listed In a DATA statement can be read into a string
variable. When two adjacent commas are encountered in
the data list, a null string 1s read.

A single READ statement may read from more than one
DATA statement, and several READ statements may read
from a single DATA statement.

» The READ statement begins reading from the first DATA
statement In the current program or subprogram and
proceeds to the next DATA statement when the current
data list has been read.

» If a READ statement does not read all of the current data
list, the next READ statement begins with the first
unread item in the list.

» An attempt to read data after all the data in the current
program or subprogram has been read results in an error.

The RESTORE statement can be used to alter the order in
which DATA statements are read.

READ can read data only from a DATA statement that is in
the same program or subprogram as the READ statement.
Each time a subprograim i1s called, data is read from the first

DATA statement.

DATA, RESTORE

Reference Section 2101

REM

Formats

Description

Examples

The REM statement makes the rest of a program line into an
explanatory remark.

REM [characier-string)
character-string]

The REM statement enables you to enter explanatory
remarks into your program. Remarks may include any type
of information, but they usually explain a section of a
program. Although remarks are not executed, they do take
up space In memory.

Character-string may include any displayable character.
Any character that follows REM, including the statement
separator symbol (:) is considered part of the remark.
Therefore, if REM is part of a multiple-statement line, it
must be the last statement on the line.

The exclamation point (!) is called a tail remark symbol and
may be used instead of the word REM. The exclamation
point can appear as the first statement on a line or after the
last statement in a multiple-statement line. If the
exclamation point appears after a statement, the statement
separator (:) is not needed. Using the tail remark symbol
saves space In the listed form of the program.

150 REM BEGIN SUBROUT INE
Identifies a section beginning a subroutine.

270 SUBTOTAL=L4+B !Calculate subtotal

Identifies statements that perform a specific calculation.

2102 Reference Section

PRENUMBER

- ascription

1 ;.'. Cross Reference

The RENUMBER command enables you to change the numbers
of program lines.

RENUMBER [initiai-line] [,increment]

The RENUMBER (or REN) command changes the line
numbers of a program. If no initial-lire is provided, the
renumbering starts with 100. If no tncrement is included, an
increment of 10 is used.

REN also changes all references to line numbers to match
the renumbered lines. If a statement refers to a line number
that does not exist, the program is renumbered, but a
warning is displayed and the line number reference is
replaced with 32767, which is not a valid line number.

If the values entered for initial-line and increment result in
the creation of line numbers larger than 32766, the program
is left unchanged and the message E11 Line number
error is displayed.

REN
Renumbers all lines to start with 100 and increment by 10.

REN ,100
Renumbers all lines to start with 100 and increment by 100.

REN 10000,5
Renumbers all lines to start with 10000 and increment by o.

NUMBER

Reference Section 2103

RESTORE

m‘

The RESTORE statement changes the order in which data is read
from DATA statements or from a file.

Formats

Description

RESTORE [line-rnumber]
RESTORE [#file-rumber{ , REC numeric-expression]]

RESTORE specifies that the next READ statement executed
accesses the first item in the DATA statement specified by
line-number.

Line-raumber must be in the same program or subprogram
as the RESTORE statement. If no line-number is included,
the DATA statement with the lowest numbered line in the
current program or subprogram is used. If line-number is
not a DATA statement, the next DATA statement following
1t is used.

RESTORE #file-number positions that file to the first
record. The next input/output statement that refers to file-
number accesses the first record in the file. Any pending
output data is written to the file before the RESTORE
statement is executed. Any pending input data is ignored.
File-number O refers to the keyboard and display; therefore
RESTORE #0 performs exactly like RESTORE as described
above,

Note: The RESTORE statement cannot be used with files
stored by a cassette recorder.

REC may be used with devices that support RELATIVE
record (random-access) files. Numeric-expression specifies
the record to which the random-access file is positioned.
The next input/cutput statement that refers te that file
accesses that record. Refer to an appropriate peripheral
manual for information about RELATIVE files.

Note: The first record of a file is record zero.

2+104 Reference Section

%Examplas

Cross Reference

150 RESTORE |
Selects the first DATA statement in the program as the next

DATA statement to be read.

200 RESTORE 130
Selects the DATA statement at line 130 as the next DATA

statement to be read. If line 130 is not a DATA statement,
the next DATA statement after line 130 is selected.

230 RESTORE #1 |
Sets file #1 to the first record in the file, which is record 0.

DATA, READ

Reference Section 2+105

RETURN (with GOSUB) ETURN (with ON ERROR)

' o ——— =S

RETURN ends execution of a subroutine and then retums RETURN is used with ON ERROR to end an error-processing

program control to the line following the subroutine cali. subroutine.
Format RETURN B Formats RETURN
_ ' RETURN NEXT
Description Used with GOSUB, RETURN transfers control back to the RETURN line-number
statement following the GOSUB or ON GOSUB statement &
that was last executed. i Description Used with ON ERROR, RETURN ends an error-processing

subroutine, An error-processing subroutine is called when
an error occurs after an ON ERROR line-number statement
has been executed. The error-processing subroutine can
contain any BASIC statements, including another ON
ERROR statement.

A subroutine may contain more than one RETURN
statement.

Cross Reference GOSUB, ON GOSUB

RETURN with no option transfers control to the statement
In which the error occurred, and the statement is executed

again.

RETURN NEXT transfers control to the statement following
the one in which the error occurred.

RETURN line-number transfers control to the line specified.
The specified line must be in the same program or
subprogram as the error-processing subroutine, even
though the error may have occurred in some other

subprogram.

2-106 Reference Section Reference Section 2.107

T RETURN (with ON ERROR) (Continued) |

Example

Cross Reference

The program below illustrates the use of RETURN with ON
ERROR.

100 ON ERROR 150

Transfers conirol to line 150 when an error oCcurs.
110 X=VAL("D")

Causes an error, so control is transferred to line 150.
120 PRINT “DONE” :PAUSE 2

Prints DONE.

130 STOP

140 REM ERROR HANDL ING

150 IF A>4 THEN 200
Checks to see if the error has occurred four times and

transfers control to 200 if it has.

160 A=A+l

Increments the error counter by one.

170 PRINT A:“ERROR(S)”:PAUSE 2

Prints the number of errors that have occurred.

180 ON ERROR 150
Because of the error, ON ERROR STOP was selected.

Line 180 resets the error handling to transfer to line 150.

150 RETURN
Returns to the line that caused the error and executes it

again.
200 PRINT "LAST ERROR” :PAUSE 2:RETURN NEXT

[s executed only after the error has occurred five times.

Prints LAST ERROR and returns to the line following the one

that caused the error.

ON ERROR

2+108 Reference Section

| RND

| Format

Description

f Example

£ Cross Reference

The RND function generates a pseudo-random number.

L E .
a
[3
. i
k-

u

RND

The RND function returns the next pseudo-random number

in the current sequence of pseudo-random numbers. The

number returned is greater than or equal to zero and less
than one.

Unless a RANDOMIZE statement is used, RND generates the
same sequence of numbers each time a program is run.

10_ PRINT 10*RND:PAUSE
tthntsl g random number greater than or equal to 0 and less
an 10.

RANDOMIZE

Reference Section 2-109

RPTS

—_____—-—————-—_—.—'-—

__________—___—-—i——n_—_—"——___—

Format

Description

Examples

The RPTS function forms a new string by repeating a starting

string.

Rﬂ$(5mng-mr€mim,ﬂummion)

The RPT$ function returns a string that is numeric-
expression repetitions of string-expression.

1f RPT$ produces a string longer than 265 characters, the
excess characters are discarded, and the warning message

W28 Truncation isdisplayed.

100 M$=RPT$ (”ABCD" ,4) y
Sets M$ equal to *‘ ABCDABCDABCDABCD™.

100 PRINT USING RPT$("#",40) ;X$:PAUSF
Prints the value of X$ using an image that consists of 40

number signs.

2110 Reference Section

B Formats

Description

The RUN statement can be used to start execution of a program
or o retrieve and execute a program with one command.

RUN [{ine-number]
RUN “‘program-name’’
RUN “‘device. file-name"’

The RUN statement starts execution of a program.

RUN line-rnumber starts execution of the program in
memory at the specified line-number. Entering RUN
without line-number starts execution of the program
currently in memory beginning with the lowest numbered
line.

RUN *‘program-name’’ searches a software cartridge and
starts execution of program-name when it is found. If
program-name 1s not found or refers to a subprogram, an
error occurs. A string expression may be used to specify

prograrm-name,

RUN “‘device. file-name’’ deletes the program currently in
memory, loads the contents of file-name from device into

memory, and executes it. A string expresmnn may be used
to specify device. file-name.

Note: If an 1/0 error occurs, the program currently in
memory may be unaffected. Also, if file-rname specifies a
data file rather than a program ﬁle it may be necessary to
press the [RESET] key.

Befnre a program is executed, the following process takes
place.

» Numeric variables are set to zero, string variables are set
to null strings, and all open files are closed.

» Certain errors, such as a FOR statement without a NEXT
staternent or a line reference out of range, are detected.

» ON BREAK STOP, ON WARNING PRINT, and ON
ERROR STOP are selected.

Reference Section 2-111

RUN (Continued)
——————————————— T ——————

Examples RUN

Causes the computer to begin execution of the program in
memory, starting with the lowest numbered line.

RUN 200

Causes the computer to begin execution of the program in
memory starting at line 200.

RUN "1.PRG3"

Causes the computer to load and begin execution of the
program in file PRG3 on device 1.

RUN "MAT”

Executes the program MAT (matrices) in the Mathematics
software cartridge.

The program below illustrates the use of the RUN statement
to execute a program from a program. A menu is created to
enable the person using the program to choose what other
program to run. The other programs should run this
program rather than ending in the usual way, so that the
menu is displayed again after they are finished.
100 PRINT "Enter 1, 2, or 3 for programs”:

PAUSE 2

110 PRINT 7... or enter 4 to stop” PAUSE 2
120 (NPUT “YOUR CHOICE: *;C

130 {F C=1 THEN RUN "1.PRGl”
140 {F C=2 THEN RUN “1.PRG2"
150 IF C=3 THEN RUN "1 .PRG3”"
160 |IF C=4 THEN STOP
170 GOTO 100

2-112 Reference Section

| SAVE

The SAVE command stores a BASIC program on an extemal
device.

3 Format

Description

Examples

Cross Reference

SAVE ‘““device. file-name’’ [PROTECTED}

The SAVE command sends a copy of the BASIC program in
memory to an external device. By using the OLD command,
you can later recall the program into memory.

Before storing the program, SAVE removes any variables
from the system that are not used in the program.

Device. file-name identifies the device where the program is
to be stored and the file name. Device is the number
associated with the physical device and can be from 1
through 255. File-name identifies the file that contains the

program.

When PROTECTED is specified, the program in memory is
left unprotected, but the copy on the external storage

device is saved in protected format. A protected program
cannot be listed, edited, or saved.

Note: You cannot store information in a cartridge with the
SAVE command.

SAVE “1.PRGL”

Saves the program in memory to device 1 under the name
PRGI.

SAVE "2 PRG2” ,PROTECTED
Saves the program in memory to device 2 under the name

PRGZ. The program may be loaded into memory and run,
but it may not be edited, listed, or resaved.

GET, OLD, PRINT (with files), PUT, VERIFY

Reference Section 2:.113

SEG$

M‘

Format

Description

Examples

2.114

£
L

The SEGS function forms a string that is a portion of another
string.

|

SEG$(string-expression,position,length)

The SEG$ function returns a substring of a string. The string
returned starts at position in string-expression and extends
for length characters.

If position is beyond the end of string-expression, the null
string (‘") is returned. If length extends beyond the end of
string-expression, only the characters through the end are
returned.

100 X$=SEGS$("FIRSTNAME LASTNAME” ,1,9)
Sets X$ equal to 'FIRSTNAME".

200 Y$=SEGS (”FIRSTNAME LASTNAME”,11,8)
Sets Y$ equal to “LASTNAME"".

240 Z2%$=SEGS$(”FIRSTNAME LASTNAME” ,k10,1)
SetsZ$ equal to ** .

280 PRINT SEG$ (A% ,B,C) :PAUSE
Prints the substring of A$ starting at character B and
extending for C characters,

Reference Section

| SGN

Format

Description

| Examples

Cross Reference

The SGN function enables you to detect whether a value is
positive, zero, or negative.

SGN(rnumeric-expression)

The SGN function returns the mathematical signum
function. If numeric-expression is positive, a value of 1 is
returned. If it is zero, 0 is returned, and if it is negative, — 1
is returned.

140 IF SGN(A)=1 THEN 300 ELSE 400
Transfers control to line 300 if A is positive and to line 400 if
A is zero or negative.

790 ON SGN(X)+2 GOTO 200, 300,400
Transfers control to line 200 if X is negative, line 300 if X is
zero, and line 400 if X is positive.

ABS

Reference Section 2-115

The SIN function computes the trigonometric sine of an
expression.

Format

Description

Example

Cross Reference

SIN(nuwmeric-expression)

The SIN function returns the trigonometric sine of nurneric-

expression. The expression is interpreted as radians,
degrees, or grads according to the current setting of angle
units.

150 DEG:PRINT SIN{3*21.5+4):PAUSE
Sets angle units to degrees and prints .930417568.

ACOS, ASIN, ATN, COS, DEG, RAD, GRAD, TAN

2116 Reference Section

SINH

The SINH function computes the hyperbolic sine of an
expression.

¥ Format

' Description

' ., Examples

| Cross Reference

SINH(numeric-expression)

The SINH (hyperbolic sine) function calculates the

hyperbolic sine of numeric-expression. The definition of

hyperbolic sine is shown below,
SINH(X) = .5*(EXP(X) - EXP(- X))

100 PRINT SINH(O) :PAUSE
Prints O.

230 T=SINH(0.75)
Sets T equal to .8223167319.

ACOSH, ASINH, ATANH, COSH, TANH

Reference Section

2117

STOP

ey

SQR

#

The SQR function computes the square root of an expression. The STOP statement stops program execution.

Format SQR (numeric-expression) Format STOP

Description The STOP statement stops program execution. It can be
used interchangeably with the END statement except that

STOP may not be placed after subprograms.

Description The SQR function returns the positive square root of
numeric-expression. SQR(X) is equivalent to X ~ (1/2).

Numeric-expression cannot be a negative number. _
i e & Example The program below illustrates the use of the STOP

e 110 NUMB:=1

1 780 X=SQR(2.57EYH)
i | Sets X equal to the square root of 257,000, which is 120 TOT=TOT+NUMB
| ' 130 NUMB=NUMB+1

506.9516742. :

I *] 140 IF NUMB>100 THEN PRINT TOT:PAUSE 2:STOP
| X . 150 GOTO 120

|

| Examples 150 PRINT SOR(4) : PAUSE = statement. The program adds the numbers from 1 to 100.
ﬁ] | . 100 TOT=0

| Cross Reference END

1 5.118 Reference Section Reference Section 2119

STR$ ' SUB

N ——

The STRS$ function converts a numeric value into a string. The SUB statement labels the beginning of a subprogram.

M

Format STR$(numeric-expression) Format SUB subnrogram-name|(parameter-list))
Description The STR$ functipn returns the string representation of the Description The SUB statement is the first statement in a subprogram
' value of mumeric-expression. No leading or trailing spaces and must be the first statement on the line.
are included. -
il o _ A subprogram is a group of statements separated from the
| The STR$ function is the inverse of the VAL function. main program and accessed by a CALL statement. A

! £y subprogram is an efficient way to handle a task that is
i amples 150 NUM$=STR$(78.6) repeated several times in a program.
i Sets NUM$ equal to “*78.6"".
i Subprogram-name consists of 1 to 15 characters. The first
i 220 LL$=STR$(3E153) character must be an alphabetic character or an underline.
Sets LL$ equal to 3. E+ 15"". The remaining characters may be alphabetic, numeric, or
i \ underline characters. The CALL statement searches for
| 330 J$=STR$ (A*4) subprograms in a specific order (see CALL for the order) and
Il Sets J $' equal toa stmlg equal to the value obtained when A executes the first subprogram found with subprogram-
i is multiplied by 4. For instance, if A is equal to -8, J$ is set ruvme. If the name of one of your subprograms is the same
|‘ | equal to ™ — 32" as a built-in subprogram, the built-in subprogram is
!l CrossReference NUMERIC, VAL executed.

2:120 Reference Section

Parameter-list receives the information passed to the
subprogram through the argument-list of the CALL
statement. A parameter may be a simple string vanable, a
simple numeric variable, or an array. An array is listed as a
parameter by writing the array name followed by
parentheses. A one-dimensional array is written as A(), a
two-dimensional array as A(,), and a three-dimensional
array as A(,,).

The arguments of argument-list and the parameters of
parameter-list need not have the same names. However,
the number and the types of arguments In argunent-list
must match the number and types of parameters in
parameter-list of the SUB statement.

A subprogram terminates when a SUBEXIT or SUBEND
statement is executed. Control is returned to the statement
following the CALL statement.

Reference Section 2121

SUB (Continued)

Passing Datato a
Subprogram

2:122

Inforration 1s passed to a subprogram either by reference

or by value,

[f an argument is passed by reference, the subprogram uses
the same variables as the calling program. If the value of the
variable is changed in the subprogram, the value is also
changed in the calling program. A simple variable, an
element of an array, or an array listed in argument-list is
passed by reference. Arrays are always passed by
reference.

If an argument is passed by value, only the value of the
variable is passed to a varable in parameter-list. If the
value of the variable is changed in the subprogram, it does
not affect the variable in the calling program. Any type of
expression in grgument-list is evaluated and passed by
value to the subprogram. Simple variables may be passed by
value by enclosing them in parentheses.

Any variables used in a subprogram other than those in
parameter-list are local to that subprogram, so the same
variable names may be used in the main program and in
other subprograms. Changing the values of local variables in
a program or subprogram does not affect the values of local
variables in any other program or subprogram.

Any local variables in the subprogram are initialized each
time the subprogram is called.

Reference Section

B Using the SUB

3 Statement

amples

¥ Cross Reference

3

Subprograms appear after the main program. If a SUB
statement 15 encountered in a main program, it terminates
as If a STOP statement had been executed. Only remarks
and END statements may appear between the SUBEND of
one program and the SUB of the next subprogram.

The ON BREAK, ON WARNING, ON ERROR, and PAUSE
ALL statements in effect when a CALL is executed remain
mn effect while the subprogram is executing. If the
subprogram changes any of these settings, they are changed
back when the subprogram terminates.

A subprogram cannot contain another subprogram or share
any subroutines except error-processing subroutines.

100 SUB MENU
Marks the beginning of a subpregram. No parameters are
passed or returmed.

220 SUB MENU(COUNT ,CHOICE)

Marks the beginning of a subprogram. The variables COUNT
and CHOICE can be used and may change value in the
subprogram. If so, their corresponding arguments in the
calling statement are changed.

330 SUB PAYCHECK (DATE,Q,SSN,PAYRATE , TABLE(,))
Marks the beginning of a subprogram. The variables DATE,
Q, SSN, PAYRATE, and the aitay TABLE with two
dimensions can be used and may change value in the
subprogram. lf so, their corresponding arguments in the
calling statement are changed. However, if the
corresponding argument of DATE, @, SSN, or PAYRATE is
enclosed in parentheses in the CALL statement, the value
of that argument cannot be changed. The corresponding
array argument of TABLE is passed by reference in the
CALL statement and therefore any of its values can be
changed by the subprogram.

CALL, ON BREAK, ON ERROR, ON WARNING, RETURN.
SUBEND, SUBEXIT

Reference Section 2123

SUBEND

ey

WUBEXIT

The SUBEND statement ends a subprogram and retums

execution to the line after the subprogram was called. The SUBEXIT statement transfers execution out of a subprogram.

& Format SUBEND SUBEXIT

| Description The SUBEND statement marks the end of a subprogram.
When SUBEND is executed, control is passed to the line
following the statement that called the subprogram.

The SUBEXIT statement terminates execution of a

subprogram and transfers control to the line following the
statement that called the subprogram.

The SUBEND statement must always be the last statement 3 The SUBEXIT .
in a subprogram and cannot be in an IF THEN ELSE - needed in a sul?;pi:)emem may appear as many times as

statement.

] _; »5s Reterence SUB, SUBEND

Only remarks and END statements may appear between a
SUBEND statement and the next SUB statement.

Cross Reference SUB, SUBEXIT

.124 Reference Section B ‘
2 » Reference Section 2:-125

TAB

W

3 The TAB function Is used in a PRINT or DISPLAY statement to
select a specific position for a print item.

i 2 \

________—_.—.—-——“-,—l———-_—'_'_'_"___-

Format TAB(numeric-expresston}

3§ Examples 100 PRINT TAB(12);35:PAUSE
Description The TAB function, in conjunction with a PRINT or = Prints the number 35 starting at column 13.
DISPLAY statement, selects a specific position for a prnt
vy , PECILE POS P 190 PRINT 356;TAB(18);"NAME” : PAUSE

Prints 356 at the beginning of the line and NAME starting at

» If numeric-expression is greater than the current column 18.

sition, the TAB function advances to the s cified
po e 710 DISPLAY AT(10) SIZE(20),”“MGB” :TAB(10);

ition.
pOSTEET | " ADDR” : PAUSE
» If numeric-expression is less than the current position, E{gﬂﬂg?’ starting at column 10 and ADDR starting at

the TAB function proceeds to the next record and __
d to the specified position. -'
advances wpe posttion I Cross Reference DISPLAY, PRINT (with display), PRINT (with files)
» If numeric-expression is greater than the length of a |
record for the device being used, then numeric-
expression is repeatedly reduced by the record length
until it is less than the record length.

» If numeric-expression is less than or equal to zero, the
position is set to 1.

The TAB function is treated as a print item and must be

separated from other print items by a print separator. The

print separator before TAB 1s evaluated before the TAB

function, and the print separator following TAB IS | 1
evaluated after the TAB function. Normally, semicolons are |
used before and after TAB. :

In a DISPLAY statement, the TAB function is relative to the
~ beginning of the display field. If AT is used, the TAB
* function is relative to the specified column position. If
displayed information exceeds 80 characters, the TAB
function is performed relative to column 1.

If SIZE is used in a DISPLAY statement, the value specified
in SIZE is the absolute limit of the number of characters
displayed. This limit is the record length used in evaluating
i any TAB functions.

. 2126 Reference Section
Reference Section 2127

The TAN function computes the trigonometric tangent of an The TANH function computes the hyperbolic tangent of an

expression. expression.
Format TAN(numeric-expression) JFormat TANH{numeric-expression)
Description The TAN (tangent) function returns the trigonometrie gescription The TANH function returns the hyperbolic tangent of

numeric-expression. The definition of hyperbolic tangentis

tangent of numeric-expression. The expression is
shown below.

interpreted as radians, degrees, or grads according to the
current angle setting.

Example 250 RAD:PRINT TAN(Z20) : PAUSE
Sets angle units to radians and prints 2 . 237160944,

TANH(X) = (EXP(X) - EXP{ - X)J{EXP(X) + EXP(- X))

amples 100 PRINT TANH{O) :PAUSE
Prints O.

Cross Reference ACOS, ASIN, ATN, COS, DEG, RAD, GRAD, SIN
230 T=TANH{O0./75)

Sets T equal to 6351489524,

gCross Reference ACOSH, ASINH, ATANH, COSH, SINH

2-128 Reference Section Reference Section 2129

UNBREAK

The UNBREAK statement removes any breakpoints previously
set.

Format UNBREAK [line-list] b s

Description The UNBREAK statement removes all breakpoints. If lzne- |
list is specified, only the breakpoints for those lines are
removed.

Description

Examples UNBREAK
Removes all breakpoints.

400 UNBREAK 100,130
Removes the breakpoints set for lines 100 and 130.

' Cross Reference BREAK

e Effects of
USING with a
Print-list

B Cross Reference

2:130 Reference Section 5

USING enables you to define an image that formats output with
DISPLAY and PRINT.

DISPLAY USING line-number
DISPLAY USING string-expression
PRINT USING line-nurniber

PRINT USING string-expression

USING is used in a DISPLAY or PRINT statement to format
the output.

If line-number is included, the format is specified by an
IMAGE statement in the referenced line. Line-nuniber must
refer to a line in the current program or subprogram.

If string-expression is included, the format is defined by the
string expression.

When USING is present, the following changes occur in the
evaluation of the print-list of PRINT or DISPLAY.

» Comma print separators are treated as semicolons.
+» The TAB function causes an error.

» The print items are formatted according to fields
specified in the format definition. If the number of print
items in print-list exceeds the number of fields in the
format, the current formatted record is written. The
remaining values are written in the next record, using
the format definition again, from the beginning. The
format is used as many times as is necessary to complete
the print-list. A new record is generated each time the
format is used. When the number of print items is less
than the number of fields in the definition, output stops
when the first field is encountered for which there is no
print item.

» If a formatted item is too long for the remainder of the
current record, it is divided into segments. The first
segment fills the remainder of the current record and
any remaining segments are written on the next record.

DISPLAY, IMAGE, PRINT

Reference Section 2.131

The VAL function converis a string into a number, provided the
string can be read as a number.

L]

Format

Description

‘Examples

Cross Reference

VAL(string-expression)

The VAL function returns the numeric value of string-
expresstom if it 1s a valid representation of a number.
Leading and trailing spaces are ignored.

If string-expression is not a valid representation of a
number, an error occurs. To avoid this error, the string-
expression may be venified first with the NUMERIC

function. '
The VAL function is the inverse of the STR$ function.

170 NUMB=VAL("78.6")
Sets NUMB equal to 78.6.

190 LL=VAL("3ELS")
Sets LL equal to 3.E + 15 (scientific notation).

300 PRINT VAL (”$3.50") :PAUSE
Causes an error because the string contains a non-numeric
character ($).

NUMERIC, STR$

2-132 Reference Section

BVERIFY

i Format

| Bescriptinn

 Examples

: FCross Reference

The VERIFY command checks that a copy of a program saved on
an extemal storage device or loaded into memory is the same as
the original program.

VERIFY ‘‘device. file-name’’ |, PROTECTED]

The VERIFY command compares a file stored externally
with the same file in memory. The comparison can be made

after a SAVE or OLD command to check the file on the
external storage device.

Device. file-name identifies the device and the file in which
the program 1s stored. Device is the number associated with
the physical device and can be from 1 through 255. File-
name identifies the file.

If the two files are identical, the program has been stored or
retrieved successfully. If a difference is found in the
companson, either I/O error 12 or 24 is displayed.

Like SAVE, VERIFY removes any variable names that are
not used In the program. If the program was saved with the
PROTECTED option, then PROTECTED must also be
specified in the VERIFY command.

SAVE "1.PROGRAML1”

Saves the file named PROGRAMI1 to device 1.
VERIFY "1 . PROGRAM1"

Verifies whether the file was stored correctly.

OLD 71 STAT”

Reads the file named STAT into memory from device 1.
VERIFY “1. STAT"

Verities whether the file was read correctly.

OLD, SAVE

Reference Section 2133

hapter 3: Using Optional Accessories

This chapter provides information to help you use the optional
Cl-7 cassette interface cable, PC-324 printer, and 8K Constant
Memory cartridge accessories. With optional equipment, you can
save programs and data by recording them on cassette tape, you
can get printed resuits, or you can expand the memory.

-

i able of Guidelines for Selecting Equipment 342
ontents Caring for Your Equipment 33
Connecting Your RecordertotheTI-74 34

Prompts for Using the Cassette Recorder 35

Determining the Recorder Settings 3-6

Guidelines forGood Recording 310

Procedure for Saving Programs 3-12

Verifying Program Storage and Retrieval, 313

Procedure for RetrlevingPrograms 3-14

Setting Up a Sample Program and Data File 3-16

If You Have Recording Difficudties 3-18

Controlling the Printer From BASIC 3-19

Accessing Cartridge Memory, .. . 323

Using Optional Accessories 3-1

Guidelines for Selecting Equipment

—

The CI-7 cassette interface cable, a cassette recorder, and a
cassette tape become a complete information storage system for
the Tl-74. The performance of the storage system depends on the
type of recorder and cassette tape you select. You may want to
consider the following guidelines when you choose a cassette
recorder and supplies.

Selecting
a Recorder

Selecting
Cassette Tapes

The TI-74 is compatible with most standard cassette
recorders. However, for the best results, choose a cassette
recorder with these features:

» Volume control

» Tone Control

» Microphone jack

» Hemote jack

» Earphone or external speaker jack

= Digital tape counter (This enables you to quickly locate a
specific tape position when you store more than one
program or set of data on the same tape.)

» Optional AC adapter (This avoids problems that weak
batteries may cause, such as interfering with the transfer

of information.)

For maximum storage capability, follow these guidelines
when you select cassette tapes.

» {Choose tapes with low-noise characteristics. Tapes with
extended frequency response, such as digital tape, are
unnecessary and cost more than common audio
cassettes,

> Choose quality cassette tapes. Low-quality tapes are
prone to tangling and breakage.

» Use the type and length of tape recommended by the
manufacturer of your recorder.

3-2 Using Optional Accessories

= - THE I EEETECT S LTSS
e Y o — . _

B Caring for the

Hinterface Cable

:Caring for the

% Recorder and
PCassette Tapes

aring for Your Equipment

The following suggestions can help you care for your cassette
interface cable, cassette recorder, and cassette tapes.

Several things should be taken into consideration in caring
for the cassette interface cable.

» Handle the cable carefully.

» Store the cable in a clean, dry place, protected from high
temperatures.

You should follow several simple guidelines 1n caring for
your cassette recorder and cassette tapes. These suggestions
include:

» (lean and demagnetize the tape head periodically
because tapes tend to deposit magnetic particles on the
tape head that hinder clear information transfer.

» Store your cassette tapes away from magnetic sources,
" such as a television set, an electric motor, magnetic
cabinet latches, magnets in children’s toys, and magnetic
note holders.

Using Optional Accessories 3.3

Connecting Your Recorder to the Tl1-74

e ——

The Cl-7 cassette interface cable enables the Tl-74 to exchange

information with the cassette recorder. Only a few simple steps
are required to properly connect the interface cable to the Ti-74

"and your cassette recorder.

Connecting
the Recorder

3.4

Be sure the TI-74 is off before you connect or disconnect
the cable. To connect your recorder to the TI-74:

1. Insert the plug on the red wire into the microphone jack
of the cassette recorder (usually marked MIC).

Black wire to remote
accessories jack

2. Insert the plug on the white wire into the jack for the
earphone, monitor, or external speaker on the cassette
recorder (usually marked EAR or MONITOR).

3. Insert the plug on the black wire into the remote control
jack of your cassette recorder (usually marked REM).

4. Plug the other end of the cassette interface cable into the
peripheral port on the back of the TI-74.

Using Optional Accessories

tomatic
S Display Prompts

@Recording

ithout Prompts

__ Prompts for Using the Cassette Recorder

While saving and retrieving programs or data, you must manually
operate the cassette recorder. Prompts appear in the display to

help you operate the recorder and to tell you what is happening in
the recording process.

In the recording process, two types of prompts appear in the
display.

» Instructional prompts—Tell you what to do to manually
operate the recorder and the TI-74. For example, the
prompt Positiron tape; then press ENTER tells
you what to do at this point in the operation.

> Informational prompts—Tell you what is currently taking
place in the recording process. For example, the prompt
Reading. . . indicates that the TI-74 is retrieving
information from a cassette file.

After you become familiar with recording operations, vou
may want to speed up the process by eliminating the
automatic display prompts. To disable the automatic
prompts, type the suffix ** NM"’ (for no messages) at the end
of the filename. if you disable the prompts before you begin
an Input or output operation, be sure that the tape is
positioned correctly.

For example, if you type RUN "1.TEST.NM”, press [ENTERI,
and then press the PLAY button of your recorder, the TI-74
searches the tape for the file named TEST. When the file is
found, you can load and execute the program without
receiving any prompts.

Using Optional Accessories 3:5

Determining the Recorder Settings

ﬁ

Before you begin recording your programs and data files, you
need to complete the following test program. Making a test

tecording establishes the right volume and tone setting for your
recorder, checks the compatibility of your recorder and tape, and

helps you become familiar with recording a program file.

Procedure

Comments

1. Adjust the volume to a medium
setting and, if your recorder has a
tone control, adjust the toneto a
medium-high setting (7 on a scale
of 10).

These settings for volume and tone
control work for most recorders. You
may need to vary the settings slightly
on your recorder. (Refer to page 3-9
for additional information.)

2. Insert a cassette tape into the
recorder. Rewind the tape and set
the tape counter to zero. Then

. advance the tape past any leader
{004 or higher).

To record information, the tape must
be advanced past any leader. The
leader is the non-magnetic segment at
each end of a cassette tape.

3+ Make sure that none of the
recorder buttons are depressed.

Then turn on the TI-74.

4. Be sure the TI-74 is in the BASIC
mode. Enter the test program:

100 A$ = "TEST”

110 FORB=1TO 3
120FORC=1TO4

130 DISPLAY SEG$(AS,1,C)PAUSE .3
140 NEXT C:NEXT B:END

5. Type SAVE "1.TESTPROG” and
press {ENTER].

Addresses device 1 (the recorder) and
assigns a name to this test recording.
The | /0 indicator appears in the
display.

3:6 Using Optional Accessories

Procedure

Comments

6.

When Position tape; then
press ENTER appears, make
sure the tape is past any leader.
Note the tape counter setting and
press [ENTERL.

The tape counter setting helps you
locate the beginning of the file when
you are ready to retrieve it.

When Press RECORD: then
ENTER appears, press the record

button(s) on the recorder and
press [ENTER].

After a few seconds, the recorder
begins to record the file and the
promptWriting. .. appears.

WhenPress STOP: then
ENTER, appears, press the STOP
button on the recorder. Note the

tape counter setting and press
[ENTER].

Your file is saved. The TI-74 is ready
to store another file or play back what
you recorded. You now know the tape

counter setting for the beginning and
ending of the file.

Type VERIFY "{.TESTPROG" and
press [ENTER].

£ 10.

WhenPosition tape: then
press ENTER appears, use the
buttons on the recorder to locate
the beginning of the file. Then
press [ENTER].

The file is ready to be read.

11,

WhenPress PLAY; then
ENTER appears, press the play
button on the recorder and press
[ENTERI.

After a few seconds, the recorder
plays back the file and the prompt
Reading. .. appears.

Using Optional Accessories 3-7

Determining the Recorder Settings (Continued)
f

Procedure

Comments

12. View the prompt and follow the
instruction that applies to you.

» IfPress STOP:. then ENTER
appears, press the STOP
button on the recorder. The
file is saved to cassette tape.

. » I[fEQO 1/0 error 3 "17
appears, refer to “Adjusting
the Tone and Volume'’ on the
next page.

» IfEQ 1/0 error 23 "17
appears, refer to **Adjusting
the Tone and Volume'' on the

next page.

» If no error message appears
after a considerable length of
time and the TI-74 continues
to search for the file, check for
low batteries. Then go to step

5.

Your test program is verified. Note the
volume and tone settings that were
successful for the test recording.

The TI-74 could not find the test
program. You may have tried to record
on the leader, the volume setting may
be incorrect, or you may not have
started at the beginning of the file.

The file is there, but the TI-74 cannot
read it because of a technical problem.
The volume setting may be incorrect,
or the recorder may be incompatible.

Low batteries may be interfering with
the transfer of information. Replace
batteries as needed, or use an AC
adapter with the recorder.

3.8 Using Optional Accessories

L Adjusting the
: Tone and Volume

Comments on
Volume and Tone

If an error message appears, rewind the tape to the
beginning of the file, and increase the volume
approximately 20 percent. Return to step 9 of the recording
procedure, and repeat the VERIFY command.

If an error message appears again, adjust the volume to
approximately 2(} percent below the medium setting and
repeat the VERIFY command again.

A volume setting between medium-low and medium-high
(3-8) works well for most recorders.

It vou have tried to verify the recording on several volume
settings without success, return the volume control to a
medium setting, raise the tone setting approximately 20
percent, and repeat the procedure.

A tone setting between medium and high (5-10) works well
for most recorders.

Notice that the volume setting necessary for saving a file
may be higher than for normal listening. If you use the
recorder for audio purposes, be sure to readjust the volume
and tone settings before you record data from the T1-74.

If you use a tape that has different magnetic characteristics
fror the tape you were previously using, you may need to
repeat the procedure for determining the proper volume
and tone settings.

Using Optional Accessories 3-8

I Guidelines for Good Recording

. -: m

| Saving files by recording them on cassette tape provides a
[permanent record of your programs and data. However, several Py
I factors can influence the quality of your recordings. The :

. suggestions below can help you record your programs and data E _
! efficiently and avoid some potential problems. g 1
i

i
|

Using the Thfa tape counter enables you to quickly locate a specific Backing Up You may want to make a backup tape of your files. A
Tepe Counter point on the tape where a file may be located. To use the | Your Tapes backup tape provides another recording of your file in case
tape counter, follow these steps before you begin recording: one is accidentally lost or damaged. Because duplicating a
| | o tape may affect the accuracy of the recording, be sure to
1. Rewind the tape to the beginning. make two original recordings on two different tapes.
2. Eet the tape counter 1{310 zero by pressing the tape counter Preventing Each time you make a recording, any material that you
utton on your recorder. Erasure previously recorded on that portion of the tape is
_ | automatically erased. If you have a recording that you wish
3. Advance the tape to the area the file is to occupy and to keep permanently, break the rear left tab of the side you

note the number on the counter.

want to save. This prevents you from depressing the

RECOR
To avoid false counter readings, do not reset the tape D button on the recorder.

counter unless the tape is rewound to the beginning.

Tab broken out
4. Assign each file its own name. Make a note of the file Tape to allow
name and the counter positions where the file begins and re-recording
ends. on side two
Tips for To avoid problems when recording programs or data, follow =
Recording these guidelines: .' Write-protects
side one
» Do not record on the leader (the non-magnetic segment
at the beginning and at the end of a cassette tape). ‘
Write-protects

» Do not record too close to the end of the tape. If the tape side two

runs out before recording is complete, the whole file is
unusable because the end-of-file record is needed for the
TI-74 to access the file.

Side One

» Leave a few seconds of space after a file before you
"begin recording a new file. If you record in the middle of

an existing file, the old file is no longer usable.
Note: If you need to record on a tape that has a tab missing,

» Record and play back files on the same cassette recorder. ﬁ place a piece of cellophane tape over the tab opening before
Because of calibration differences between recorders, . you record a file.
data recorded by one recorder may not read reliably on
another recorder.

3-10 Using Optional Accessories Using Optional Accessories 311

Procedure for Saving Programs

e

Verifying Program Storage and Retrieval

]
B

You can use a cassette recorder to record any programs you The VERIFY command compares the program file to the program

| develop with the TI-74. Later, you can retrieve the programs by : in memory. Using the VERIFY command is a good practice after
*‘ _loading the information back into the TI-74's memory. Be sure to] saving or loading a program.

‘make the {est recording given in “Determining the Recorder
Settings” to find the correct tone and volume settings before you
hegin saving files.

_ Using the You can use the SAVE command to copy (or save) a _ ; Using the To venty that a file was stored correctly or that it was
SAVE program in the TI-74's memory to a cassette tape. B VERIFY loaded into memory correctly, follow these steps.
'- Command i Command

To save the program currently in memory:
1. Type SAVE "1.file-name” and press [ENTER].

The 1 is the device number of the cassette recorder and
file-name is the name of your file.

2. When the prompt Position tape; then press ENTER
appears, advance the tape to a blank area with sufficient
space to record the program.

Be sure to leave some space between the last file and the
beginning of the new file.

If your recorder is equipped with a digital counter,
rewind the tape to the beginning and reset the tape
counter to zero before positioning the tape.

3. Press the [ENTERI key.

4, When the prompt Press RECORD; then ENTER
appears, press the RECORD button on your recorder,

and then press the [ENTER] key.

After a few seconds, the prompt Writing. .. appears.
The TI-74 is transferring information to the cassette file.

. Note: If you need to cancel the output operation, press
the [RESET] key on the TI-74.

When the prompt Press STOP; then ENTER appears,
press the STOP button on your recorder and then press

[ENTERL.

) |

The program is now saved on cassette tape. You may want
to verify that the recording is accurate by using the VERIFY
command.

Using Optional Accessories

1. Type VERIFY "1.file-name” and press [ENTER].

2. When the prompt Position tape; then press ENTER
appears, perform one of the following.

» If you know where your file is located on the cassette
tape, press the FAST FORWARD and REWIND
buttons to locate the beginning of the file.

» If you are unsure where the file starts on the cassette
tape, rewind the tape to the beginning.

3. Press[ENTER].

4. When the prompt Press PLAY; then ENTER appears,

press the PLAY button on your recorder. Then press
[ENTER].

When the file is found, the prompt Reading. . . appears.
The TI-74 1s comparing the file on the cassette tape with
the information in memory.

0. If the prompt Press STOP; then ENTER appears, the

contents are the same. Press the STOP button on your
recorder and then press the [ENTER] key.

If an error message appears, the contents are not the
same. The action you take at this point depends on
whether you saved a program or retrieved a program.

» If you saved a program, check the settings on the
recorder, and then save the program again, using the
procedure on the previous page.

* [f you retrieved a program, check the settings on the

recorder, and then try retrieving the program again,
using the procedure on the following page.

Using Optional Accessories 313

Setting Up a Sample Program and Data File

The BASIC statements that can involve cassette operations are
SAVE, OLD, VERIFY, OPEN, CLOSE, INPUT, LINPUT, PRINT,
EOF, and CALL I/O. A sample program using many of these
statements is given below. A description of each statement can
be found in Chapter 2. '

The Sample
Program

Step 1;
Entering the
Program

With the foliowing program, you can enter information
about three different accounts and retrieve the information
as needed.

Enter the sample pmgram listed below. Notice that line 210
includes commas to separate the data fields of the record.

100 REM Sample program

110 DISPLAY "1 — create; 2—recal| 3-quit”

120 PAUSE 2

130 DISPLAY "YOURCHOICE? T,

140 ACCEPT AT(14) VALIDATE("123"),Z

1500N Z GOTO 160,250,340

160 FOR X=1 TO 3 'keyindata

170INPUT "ACCT # "AS$(X),”ACCT NAME ";B$(X),
*ACCT BALANCE "A(X)

180 NEXT X

190 OPEN #1.”"1.DATA1",DISPLAY, OUTPUT lcreate data file

200FOR X=1 TO 3

210 PRINT #1,AS(X);","”;BS(X).",”; A(X)

220 NEXT X

230 CLOSE #1

240 GOTO 100 lreturntomenu

250 OPEN #1,"1.DATA1”,DISPLAY,INPUT Iread data file

260 FOR X=1TO 3

270 INPUT #1, AS(X),BS$OX),A(X)

2BONEXT X

290 CLOSE #1

300 FOR X=1 TO 3 !display dataread from file

310 PRINT "ACCT# ”; AS{X}," -BSOO): " ":A(X):PAUSE

320 NEXT X

330 GOTO 100 !returnto menu

340END

You may want to run the program before storing it on
cassette tape, or you may want to store the program at this
point. (Refer to “‘Procedure for Saving Programs’’ for
instructions.)

3.16 Using Optional Accessories

M_

Step 2.
Creating and
Saving a
Data File

1. Run the sample program.
The following prompt appears in the display.
l-create; 2-recall; 3—quit

After two seconds, the following prompt appears in the
display.

YOUR CHOICE?

2 Enter 1 to create a data file. Display prorapts mstruct
you to type in the account number, name, and balance

for each account.

3. Enter the following information into the program.

001
Lang Institute
30000

002
A. T. Optical
50000

003
Grantham Const.
75000

4. Follow the prompts to record the data file on cassette
tape. (Refer to ““Procedure for Saving Programs’ for
instructions.) Then you can select

» QOption 2 to start the prompts for retrieving the saved
data file. (Refer to '‘Procedure for Retrieving
Programs” for instructions.)

» Option 3 to exit from the program.

Using Optional Accessories 3:17

If You Have Recording Difficulties

_—

Iif you experience difficulty with your cassette recorder
, YOU ma
be able to comect the problem by following these suggeitinns. ’

If the Recorder If your cassette recorder does :
. not respond to any f
Is Not Operating that move the tape, check the following. y functions

> Ifthe recqrder is AC powered, check that it is connected
to a functional AC power source,

* If the recorder is battery powered, check that its
batteries are not depleted.

> If the interface is plugged into the remote control jack,
unplug the remote plug and try storing or retrieving a file
while operating the recorder manually. Be prepared to
press a recorder button and [ENTER] at the same time
when the computer prompts you.

» If the illtEI:fHCE is plugged into the peripheral port on the
PC-824 printer, discormect the printer and connect the
interface directly to the TI-74. If you can then store and

retrieve a file, the printer may not be operating properly.

If You Cannot If you cannot locate a file at j .
titsta
Lmatﬂ' a File the f Dﬂﬂwing_ pe counter SEttll’lg, check

* Be sure the volume is set correctly.

» Rewind' the tape, reset the counter, and advance the
Ftape to Just before the noted tape counter position.

3-18 Using Optional Accessories

T A ¢ o]] P e L T U LLL L LB il 2t g Bem ks mles m e et AR an e o ee o

P el B gl T o W o 8 il H . N
7 PRI L e b L it b L T ke i 4, rrrm 8 s S S oyl =y s = e .
. . Lo) L et . - it m s e .
. . ’ 2 e PR e s .- T

[
b
-1

E

k"

Controlling the Printer From BASIC

Device Code

Carriage
Returmn Options

Example

. e

This section contains information that applies when the PC-324
printer is connected to the TI-74. You can select options for the
carriage retumn and for the line spacing. You can also send the
printer instructions in the form of an 10 subprogram or as

character strings.

For BASIC to address the printer, it must use the printer’s
device code, 12. '

After you use the OPEN statement to create a link to the
printer, you can use the PRINT statement to print an item.
When the item has been printed, the carriage return options
cause either of two actions to occur.

» A carriage return can automatically follow the item. This
option is selected by including R = L. in the open
statement or by not specfying R.

» The next print item can begin on the same line. This
option is selected by including R=N in the OPEN
statement.

These options can be used with the OPEN statement or the
LIST commanda.

When the following prograr is run, the resulting printout 1s
as shown.

100 'R = N Option
110 0PEN #1,"12.R=N",0UTPUT
120 PRINT #1,”one ":PRINT #1,"two ":PRINT #1,"three "

one two three

When the following program is run, the resulting printout is
as shown.

100 'R =L Option
110 OPEN #1,”12.R=L",0UTPUT
120 PRINT #1.”one ":PRINT #1,"two ":PRINT #1,"three "

one
two
three

Using Optional Accessories 3:19

Controlling the Printer From BASIC (Continued)

-—_—

Line Spacing The line spaci ' ' i i
: Spacing options cause either single spac
Options double spacing to occur. mele spacing or

- Prmtmg ¢an occur on every line of the paper. This option
Is selected by including L.= S in the OPEN statement, or
by not specifying L.

- Pnnl;mg an occur on every other line of the paper. This
option is selected by including L=D in the OPEN
statement,

These options can be used with the OPEN statement or the

LIST command.

Example When the following program Is run, the resulting printout is
) as shown.
100 !L = S Option
TT00PEN #1,"12.L=S",0UTPUT
120 PRINT #1,"one ":PRINT #1,”two "PRINT #1,"three ”
one
two
three
When the following program is run, the resulting printout is
as shown.
100 'L =D Option
110 OPEN #1,"12L =D " OUTPUT
120 PRINT #1,”one ":PRINT #1,"two ":PRINT #1,"three
one
two
three
3-20 Using Optional Accessories

;-'Example

The PC-324 supports certain peripheral commands
availabie with the I0 subprogram.

Code Command Result

80 Self Test #)' Reports the version of code in the
printer’s ROM. When CALL
I0(12,80,X) is executed, X becomes
100 for version 1, 101 for version 2,

etc.

81 Self Test #1 Performs a printing demonstration.
When CALL I(X(12,81,X) is executed,
X becomes 6 if a device error occurs
and zero if the demonstration runs to
normal completion.

82 Self Test #2 Performs the printer’s comparison
with expected values. This test is
similar to the calculator’s power-up
routine that checks for changes in
memory contents. However, the
values checked by this test are in
ROM. Therefore, this test fails only if
the printer is damaged. When CALL
I0(12,82,X) is executed, X becomes
if the test is satisfactory and 80 if the
test fails.

The following program tests the printer.

110 X=0:Y =0
120 CALL 10(12,80,X)

130 CALL 10(12,82,Y)

140 X=X - 99

150 PRINT USING"VERSION # IS IN THIS PRINTER”;X:PAUSE
160IF Y=0 THEN 170 ELSE 180

170 PRINT "PRINTER ROM IS SATISFACTORY":PAUSE:STOP
180 PRINT "PRINTER IS DAMAGED”:PAUSE:STOP

Using Optional Accessories 3.21

Controlling the Printer From BASIC (Continued)

Printer Control
Codes

ixample

Other ASCII
Codes

You can signal the printer to perform any of the following
actions by sending the corresponding ASCII code.

Code Action

13 Carriage return

17 Use single spacing
18 Use double spacing

Because the carmiage return includes a line feed
automatically, the ASCII code for line feed (10) is ignored.

The following program allows you to type lines and send
them to the printer.

110 ACCEPT ERASE ALL,AS$
120 DISPLAY "Double spacing2(Y/N)"

130 B$ = KEY$
140 IF B$="Y” OR B$="y" THEN C=18 ELSE C=17

150 OPEN #1,"12",0UTPUT:PRINT #1,CHR$(CXAS
160 CLOSE #1:GOTO 110

The PC-324 responds to ASCII as listed in Appendix B
except for the codes 00 through 31, the codes past 127, and
four of the characters. The printer regards the codes 00

- through 31 as NOP except the three listed above. The

highest code to which the printer responds is decimal 127,

The list below shows the four codes whose characters differ
from those of the TI-74.

Character |

Code Character Code
92 \ 126 ~
124 . 127 Space

3:22 Using Optional Accessories.

M f
L 3
i

r
[
P
L

[l

]

| &
|
P
| !
iy
i \

dding the
S artridge Memory
o BASIC

ancelling
emory
pansion

jUsing a Cartridge
gor Storage

j
|
g
|

ccessing Cartridge Memory

You can use !he 8K Constant Memory cartridge for either of two
purposes: to increase the memory available for BASIC

programming or {o store the contents of memory for later
retrigval, |

After the 8K Memory cartridge is installed in the cartridge
port, a CALL ADDMEM command must be executed if you
intend to use cartridge memory as part of available
memory.

Cantion: Executing a CALL ADDMEM command erases the
contents of cartridge memory before adding the cartridge
memory to BASIC, However, the computer’s memory is

unaffected.

Refer to Chapter 2 for information about the ADDMEM
subprogram and the FRE function.

After CALL ADDMEM has been executed, the cartridge

memory remains available to BASIC until one of the
following occurs.

» A NEW ALL command is executed.

» The [RESET] key is pressed.

» The cartridge is removed while the calculator is on.
» Battery power is lost.

When one of these conditions occurs, the cartridge memory
is separated from the available BASIC memory and the
computer’s memory is cleared.

The 8K Memory cartridge can be used to store the entire
contents of the TI-74’s 8K memory, known as a memory
image. Refer to Chapter 2 for information about the GET
and PUT subprograms, which handle the transfer of
information to a cartridge.

The cartridge retains a memory image untii:

» Another image is placed in the cartridge.

» CALL ADDMEM is executed.

= Battery power is lost.

Note: If the cartridge is in use as memory expansion, you

must cancel memory expansion before you can use the
cartridge for storage.

Using Optional Accessories 3-23

o

—a el A Rl S SR T 1 ; T -m—‘f"‘“ 3

MW Ay LA A M e g e e Hp e, Db

. Appendices

¢ Table of
i Contents

The appendices provide information you may need when
investigating the details for a program. Note that a difficulty
section is included in the TI-74 User’s Guide that can help
correct certain problems. That book also has information
about contacting Texas Instruments and contains the
warranty.

Appendix A: Reserved Word List
Appendix B: ASCIl CharacterCodes
Appendix C: Logical Operations, .
Appendix D; Error Messages,
Appendix E: Numeric Accuracy
Appendix F: Differences Between TI-74 BASIC and Others . .
Appendix G:Index

Appendices

A

Appendix A: Reserved Word List

m

The following is a list of all TI-74 BASIC reserved words. A
reserved word may not be used as a variable name, but may be a
portion of a variable name. A variablename can also be a portion

{ of a reserved word except for the abbreviations of reserved words,

h

Commands and Most statements can be executed immediately as well as

Statements used in a program line. The words you can include only in g
program statement are noted with a P and the commands
you can use only outside the program are noted with a ¢,
ABS ERASE
ACCEPT?P ERROR
ACOS EXP
ACOSH FOR
ALL | FORMAT
ALPHA FRE
ALPHANUM GOSUBP
AND GOTOP

l APPEND GRAD

; ASC H
ASIN IMAGEP
ASINH INPUTP
AT INT
ATANH INTERNAL
ATN KEY$
BREAK LEN
CALL LET
CHR$ LINPUT?
CLOSE LIST*
CONF® LN
CONTINUE® LOG
COS NEW®
COSH NEXT
DATA NOT
DEG NULL
DEL NUM*®
DELETE NUMBERS*
DIGIT NUMERIC
DIM - OLD®
DISPLAY ON
ELSE OPEN
END OR
EOF OUTPUT

A2 Appendices

1.
by

iStatements
{Continued)

L Subprograms

tcommands and

PAUSE

PI |
POS

PRINT
PROTECTED
RAD
RANDOMIZE
READP

REC
RELATIVE
REM

REN {
RENUMBER®
RESTORE
RETURNY
RND

RPTS

RUN

SAVE®

SEG$

SGN

SIN

SINH

SIZE

You can use the names of system subprograms as variable
names. However, subprograms you write should not be

SQR

STEP

STOP

STR$

SUBP
SUBEND?
SUBEXIT?
TAB

TAN

TANH
THEN

TO
UALPHA
UALPHANUM
UNBREAK
UPDATE
USING
VAL
VALIDATE
VARIABLE
VERIFY*
WARNING
XOR

given system subprogram names.

CALL ADDMEM*

CALL ERR
CALL GET*
CALLIO
CALLKEY

" CALL PUT*

Appendices

Appendix B: ASCII Character Codes

m

ASCH Table

The following table lists the ASCII character codes in decimal

and hexadecimal notation.

The ASCII commands and/or character(s) displayed when
the key or key sequence 1s pressed are shown in the column
titled Character.

Svstem-reserved character codes (0-15) and the user-
assigned keys (codes 128-137) are shown as two asterisks

ASCIl Code Displayed

DEC HEX Character Using CHR$ Key Sequence

0 00 NULL * A [CTLIO

01 01 SOH * [CTLI A

02 02 STX * ICTLIB

03 03 ETX ¥ [CTLIC

04 04 EOT * [CTLID

05 05 ENQ * [CTLIE

06 06 ACK *x [CTLIF

(7 07 BEL * - [eTdG

08 08 BS * ICTLIH

09 09 HT . ICTL]I

10 OA LF ¥ E [CTL]J

11 OB VT * [CTLIK

12 0C FF o [CTLIL

13 0D CR o CTLIM or [ENTER]

14 OE SO *# CTLIN

15 OF SI " CTUO

16 1() DLE CTLIP

17 11 DC1 CTLIQ

18 12 DC2 CTLUR

19 13 DC3 CTLIS

20 14 D4 CTUT

21 15 NAK ICTLIU

22 16 SYN [CTLIV

23 17 ETB {CTLIW

24 18 CAN {CTL] X

25 19 EM {ICTLlY

26 1A SUB ICTL] Z

27 1B ESC [CTLUICLR] or
[FN][SPACE]

28 1C FS [CTU [+/~]

A4 Appendices

[asClI Table
gContinued)

ASCII Code Displayed

DEC HEX Character Using CHR$ Key Sequence

29 1D GS ICTLI:

30 IE RS ICTL].

31 1IF US ICTL,

32 20 SPACE SPACE [SPACE]

33 21 | | [SHIFT] 1

34 22 " g {SHIFT] 2

35 23 # # SHIFT] 3

36 24 $ % SHIFT] 4

37 2H % % SHIFT],

38 26 & & [SHIFT] 5

39 27 ' [SHIFT] [SPACE]

40 28 (([SHIFTIL t]

4] 29)) [SHIFTIE V]

42 ZA O * * -

43 2B+ ~ +

44 2C ,

45 2D - - -

46 2K . . .

47 2F / / {

48 30 O 0 0

49 31 1 | 1

50 32 2 2 2

H1 33 3 3 3

H2 34 4 4 4

ha 35 5 5 5

Hh4 36 6 6 6

515} 37 7 7 7

Ho 38 8 8 8

D7 39 9 9 9

H8 3A .' SHIFT];

HY 3B ; ; :

6() 3C < < SHIFT] O

61 3D = = SHIFTI{ENTER]

02 3 > > SHIFT].

63 3F 7 ? SHIFT] [+/-]

64 40 @ @ CTL}2

65 41 A A SHIFTI A

bo 42 B B (SHIFTI B
Appendices A5

Appendix B: ASCIHl Character Codes (Continued)

ASCII Code
HEX Character

Displayed

Using CHR$ Key Sequence

ASCI| Table
(Continued) DEC
67 43
08 44
69 45
70 46
71 47
12 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 H2
83 Ha3
84 5% !
85 Hb
86 518
B7 5T}
88 H8
39 H9
90 DA
91 HB
92 5C
93 5D
94 519
95 . bHF
96 60
97 61
08 62
99 63
100 64
101 65
102 66
103 67
104 68

P N X B AN DO IO 2 Er R~ TOMTMMOO

“

J@m 0 O 0 O W

P AN ALY EIFLCCAHODOVOZZT R ~IOMNMMOO

“ |

Jm -9 OO O

ISHIFT]C
[SHIFTID
[SHIFTIE
[SHIFTI F
[SHIFT] G
[SHIFTI H
[SHIFT] |
[SHIFT] J
[SHIFTI K
[SHIFT] L
[SHIFTIM
[SHIFTIN
[SHIFT] O
[SHIFTIP
ISHIFT]IQ
ISHIFTIR
ISHIFT] S
[SHIFTIT
[SHIFT] U
[SHIFT]V
[SHIFT] W
[SHIFT] X
[SHIFT] Y
ISHIFT) Z
[CTLI8
[CTL !/
[CTLl 9
[SHIFT] 6
[CTU5
[CTL] 2

T EGMMOoOO D P

A-B Appendices

L ASCH Table
3 (Continued)

ASCIl Code Displayed

DEC HEX Character Using CHR$S Key Sequence

i05 69 i i I

106 B6A] j J

107 6B k k K

108 6C I ; | L

109 6D m m M

110 6E n n N

iI11 6F o 0 0O

112 70 »p P P

113 71 g q Q

114 72 r r R

115 73 s 3 S

116 74 1 t T

117 75 u u U

118 76 v v vV

119 77 w W W

120 78 x X X

121 79 vy y Y

122 7A 2z Z Z

123 7B | { [CTU 6

124 7C | | [CTL 1

125 7D} } [CTL]7

126 7E — - [CTL] 4

127 7F - ISHIFT] [—]

128 8O ** [FN] O

129 81 * [FNI 1

130 82 *x [FN] 2

131 83 *f (FN] 3

132 84 ** {FN] 4

133 85 **¥ {FN] 5

134 86 ** [FNI 6

135 87 ** [FNI7

136 88 ** [FNI 8

137 89 **¥ [FNI 9

138 8A

139 8B

140 8C

141 8D [SHIFT]/

142 8E [SHIFT] *
Appendices A7

Appendix B: ASCIHl Character Codes (Continued)

m

Displayed

Character Using CHRS Key Sequence

NEW
NUMBER
RENUMBER
FRE (
VERIFY
SAVE
OLD
LiST
FORMAT
OPEN
ERROR
SGN ¢
DELLETE
FOR
READ
PAUSE
NEXT
TAN (
IF
THEN
ELSE
SOR(
GOTO
GOsUB
RETURN
RESTORE
DATA
CHRS (
CALL
SIN(

P

TO

LN

(K]
r

DU T N

RN [TRET

=

Pl ko

[SHIFT] -
[SHIFT] +
[CTU *
[CTL] -
[CTL] +
(FN] [+]
[FN][—]
[FNI[t]
[FNIL{]
[FNI
FN] *
FN] -
FN} +
FN] .
[FNI,
FN] :
FNI[+/-]
FN][CLRI
FNJ A
[FN] B
FN] C
FN) D
FNI E
[FNI F
[FN] G
FN]I H
FN] I
FN} J
[FNI K
[FN] L
[FNIM
[FNI N
[FNI O
[FN]I P
[FN] Q
[FNIR
[FN] S
(FN]T

ASCII Table ASCIl Code
{Continued) DEC. HEX
143 8F
144 90
145 9]
146 92
147 93
148 94
149 95
150 96
151 97
152 98
153 99
154 9A
155 9B
156 9C
157 9D
158 9E
159 9F
160 A0
161 Al
162 AZ
163 A3
164 A4
165 Abd
166 A6
167 AY
168 AR
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 BO
177 Bl
178 B2
179 B3
180 B4
A-8 Appendices

& ASCIl Table
{Continued)

Displayed
Character Using CHR$ Key Sequence

ASCIl Code
DEC HEX
181 B5
182 B6
183 B7
184 B8
185 BY
186 BA
187 BB
188 BC
188 BD
190 BE
191 BF
192 CO
193 Cl
194 (2
195 C3
196 (4
197 5
198 U6
199 C7
200 (8B
201 CH
202 C
203 CB
204 CC
205 CD
200 CE
207 CF
208 DO
209 Dl
210 D2
211 D3
212 14
213 Do
214 Db
215 D7
216 D8
217 DY
218 DA

EXP(

| NPUT
COS(-
US ING
L.OG(
PRINT
BREAK
STOP

CONT INUE
RUN

..-I..
-1

1
+

S

.

o R TS S B

i |

i

+d

I B

i+

LEN I

R

1IN NI S 2 |

FN] U
FNIV
FN] W
FN] X
FN] Y
IFN1 Z
[FN][BREAK]
[SHIFT] [RUNI

[FN] [RUNI
{RUN]

[+/-]

[SHIFTI[FN] O
{SHIFT] [FN] 1
{SHIFT}[FN] 2
SHIFTIIFN] 3
SHEFTI[FN] 4
SHIFTI[FNI 5
SHIFT][FN] 6
SHIFTI[FN] 7
SHIFTIIFN] &
SHIFT][FN] 9

Appendices

A-9

Appendix B: ASCIli Character Codes (Continued)

m

Displayed
HEX Character Using CHR$ Key Sequence

[SHIFT] [+]

[SHIFT] 9
[OFF]
IBREAK]
[t]

[+]

[MODE]

[CTUIRUNI
[SHIFT] 7
{SHIFT] 8

CTUt)

[CTLI[4]
[CLR
[CTLI{+]
{+]

IcTU[—1}
[~]
[CTL]) [SPACE]

ASCH Table ASCI Code

(Continued) DEC
219 DB L]
220 DC "
221 DD o
222 DE '
223 DF N
224 EO s
2256 FEl 5
226 E2 =
227 E3 <
228 E4 ¥
229 E5 PB i
230 E6 OFF i
231 E7 BREAK J
232 E8 UP r
233 ES DOWN ‘
234 EA 1
235 EB &
236 EC -
237 ED i
238 EE Iy
239 EF ,
240 FO MODE s
241 F1 i
242 F2 £

243 F3

244 F4 i
245 FH W
246 F6 DEL £l
247 F7 INS 1T
248 F8 HOME i
249 F9 DELREST :i:
200 FA CLR ¥
251 FB BTAB R
252 FC LEFT =
253 FD FTAB =
254 FE RIGHT
255 FF B

A-10 Appendices

; | Appendix C: Logical Operations on Numbers

The logical operators AND, OR, NOT, and XOR can be used on
integer numbers in the range — 32768 to 32767. This appendix
briefly describes the binary number system, conversion of
decimal numbers to their binary equivalents, and the operation of
the logical operators.

B Number
¥ Systems

E Decimal
B Notation

8 Binary
¥ Notation

f——— ———— e a

i
5
i.

Binary (base 2) notation is another way to express the value
of a number. Qur usual system, decimal (base 10) notation,
uses combinations of the ten digits zero through nine.
Numbers written in binary notation use only the two digits
zero and one. Each position occupied by a binary digit (a ()
or 1) is called a bit.

In decimal notation, each digit in a number represents a
power of 10. For example, the number 2408 in decimal
notation can be written in expanded form as follows.

(2% 107)+(4 %< 10%) + (0 x 101} + (8 x 10%)
This 1s equal to 2408 as shown below.

2 x 107 =2 x 1000 = 2000
4x1{FP=4x 100= 400
Ox10'=0x 10= @
8x10=8x 1=__ 8

2408

In binary notation, each digit represents a power of two.
For example, the binary number 101101 can be written as

(I x2)4+(0x2Y+{I x2%+(1 x23-)+(0><21)+(1 x 21

For reference purposes, the powers of two and their
decimal values are as follows.

214 21:1 213‘: o "2:1 23 21 2{1

16384 8192 4096 ... 8 4 2 1

For the TI-74, the 2! bit must be zero to interpret the bits as
stated here.

Appendices A-11

Appendix C: Logical Operations on Numbers (Continued)
et e —eeeeeeaee e

Binary Notation
{Continued)

Example

The decimal equivalent of 101101 can be calculated as
shown below.

1 x2°=1x32=32
0x21=0x16= 0
1x2°=1x 8= 8
1x2°=1x 4= 4
Ox21=0x 2= 0
1x2°=1x 1= 1

45

To convert a number from decimal notation to binary
notation, repeatedly reduce the decimal number by the
greatest power of 2 not larger than the number until there is

no remainder.

The decimal number 77 can be converted to binary notation
using the following technique.

The largest power of 2 contained in the number 77 is 64 (29).
A 1is placed in that position of the binary number as shown

below.

ERE LT T LN PR -

128 64 32 16 8 4 2 1

0 1 0 0 0 O 0 4

Reducing 77 by 64 leaves a remainder of 13. The largest
power of 2 contained in 13 is 8 (23) and a 1 is placed there.
Reducing 13 by 8 leaves a remainder of 5. The largest power
of 2 contained in 5 is 4 (2%) and a 1 is placed there. Reducing
5 by 4 leaves a remainder of 1. Place a 1 in the 2" position.

The decimal number 77 in binary notation is shown below.

128 64 32 16 8 4 - 2 1

0 1 0 0 1 1 0 1

A-12 Appendices

'
e N ey sy S S WAL L 1 - oy i —rw = = —
male . = g - - - .. . - P

—_—_—— .

Example
(Continued)

Logicai
Operations

You can check the accuracy of the conversion as follows.

1x2°=1x64<=64 .
0x2'=0x32= 0
O0x24=0x16= 0
Ix23=]1x 8= 8
I1x2°=1x 4= 4
O0x21=0x 2= 0
1x2°=1x 1= 1

77

When logical operations are performed on numbers within
the valid range, the TI-74 first converts the values to their
16-bit binary equivalents. The logical operations are
performea on a bit-by-bit basis, and the resulting binary
number is converted back to decimal notation.

The left-most bit is reserved to indicate the sign (0 = positive:
1= negative). Therefore, the largest number that can be
represented by the remaining 15 bits is 32,767.

It a decimal number with a fractional part is used with a
logical operator, the number is rounded before any logical
operation is performed.

The following are the rules for the four logical operators.

Operator Rule

AND If both bits are 1s, the resultis 1.
If either bit is 0, the result is 0.

OR If eitherbitis a 1, the result is 1.
If both bits are 0, the result is 0.

XOR If either bit, but not both, is 1, the result is 1.
If both bits are the same, the result is 0.

NOT If the bit is 0, the resultis 1.
If the bitis 1, the result is 0.

Appendices A.13

Appendix C: Logical Operations on Numbers (Continued)

H | .

Example

A-14

When the logical operations are performed on t:hE numbers
77 and 67, the numbers are first converted to binary
notation. The number 77 is represented in 16 bits as .
0000000001001 101 and the number 67 1s represex}ted in 16
bits as (0000000010000 1. The results of performing an
AND, an OR, and an XOR on the two values are shown

below.

AND
(77) 0000000001001101
(67) 0000000001000011
(65) 0000000001000001

OR
(77) 0000000001001101
(67) 0000000001000011
(79) 0000000001001111

XOR
(77) 0000000001001101
(67) 0000000001000011
(14) 00ODO0OOOOO0OL1I0

The results of performing an AND, OR, and an'XOR onviis
and 67 can be obtained on your TI-74 by entering the

following.

PRINT 77 AND 67; 77 OR 67; 77 XOR 67

Appendices

M

Negative Binary
Numbers

§ Hierarchy of
I Operators

Using the operator NOT on 77 and 67 is shown below.

-

NOT 77 NOT 67
(77) 0000000001001101 (67) 00D000000100001]
(—78) 1111111110110010 (-68) 1111111110111100

To display the results of NOT 77 and NOT 67, enter:

PRINT NOT 77; NOT 67

Note that the results of NOT 77 and NOT 67 have a 1 in the
left-most bit that denotes that they represent negative
numbers. In the TI-74 a negative binary number is

represented as the two’s complement of the absolute value
of the number.

To obtain the two’s complement of a binary number,
change each 0 bit to ! and each 1 bit to 0. Then add 1 to this

changed number. For example, the two’s complement of 77
15 obtained as shown below.

77 in binary 0000000001001101
Change each bit I111111110110010
Add 1 1
— 77 in binary 1111111110110011

A more detailed description of binary arithmetic is beyond

the scope of this appendix. Refer to a standard reference
book on this subject for more information.

The numeric operators on the TI-74 have a designated
priority of completion as follows. However, you can use

parentheses to group operations in any nrder regardless of
the hierarchy.

Unary operators (including NOT)
Arithmetic Operators
Relational Operators

Logical Operators (XOR, AND, OR)

Appendices A-15

.F
.

1

3
.:le
»
.I'l-
.IZ

.: j
iy}
)

1

Appendix D: Error Me ssages

M

The follow ing lists describe each error message generated by: the
T1-74. The first list, arranged alphabetically by message, provides
detailed in formation about probable emor causes. The second

list, arangged in ascending order by efror code, serves as a Cross
reference o locate the message associated with a particular error

code.

Coping With
Errors

Messages Listed
Alphabetically

A-10

When an error message is displayed, the [~], [« [t],[+]
and [SHIFTI [PBI keys can be used to display additional
system error information and to edit an erroneous line.

is used .when an error occurs after a line is
entered. [SHIFT] [PB] displays the erroneous
entry that can then be edited and entered

again.

[SHIFT] [P 8]

used when an error occurs during program
execution to display the program line that
was executing when the error occurred.

{t][4]

Errors can be handled in a program using ON EREOR and
CALL ERR. Refer to chapter 2 for more information.

Bad argument o
» Invalid argument provided for one of the bult-in

numeTic, string, or file functions such as LOG, CHRS, or
EOF.

» Invalid argument provided for one of the option clauses
in an &Anput/output statement such as AT, SIZE,
VALIIDATE, and TAB.

» Argurnents in a CALL statement did not match the
requirements for the subprogram called.

Bad dat a _ |
» Enter-ed more than one value at a time in an INPUT or

ACCEPT statement.
» .Invalid data from a file in an INPUT or LINPUT

staternent.

Appendices

T T B A A Ll e S s 3. oA et L . L b e e g o .
B e B T S P e Y S s R T ST S o S it -
) - . Shoe=rs et Iy] o o 3 i m w o T S LT - L -t PR TITI v
. R e " Ll Bhil i . . w1 -

Messages Listed
Alphabetically
{Continued)

Bad dimension

-

Y

Specified array dimension was negative or was not a
numeric constant. .

Too many elements specified for an array.

More than three dimensions specified for an array.
Missing comma between dimensions or missing
parentheses around dimensions of an array.
Subscript value too large.

Missing comma between subscripts or missing
parentheses around subscripts.

Incorrect number of subscripts.

Bad preogram type

-

Entered a BASIC program line with a Pascal or other
non-BASIC program in memory.

Entered a SAVE, VERIFY, BREAK line-list, UNBREAK
line-list, NUMBER, RENUMBER, LIST, CONTINUE fine-
number, RUN line-number, or DELETE line-group
command with a Pascal or other non-BASIC program in
memory.

Attempted to CALL a main program or RUN a

subprogram.

Bad value

-

-
[

-

Index value in ON GOTO or ON GOSUB statement was
zero or greater than the number of line number entries.
Raised a negative value to a non-integer power.

Invalid value provided for one of the option clauses in an
input/output statement such as AT, SIZE, REC, and
VARIABLE.

Attempted a logical operation (AND, OR, XOR, or NOT)
with a value less than — 32768 or greater than 32767.

Appendices A7

Appendix D: Error Messages (Continued)

ﬁ

Messages Listed
Alphabetically
(Continued)

A-18

Break
» A breakpoint occurred or the break key was pressed.

Can't do that

-

Attempted to perform a string operation as an immediate
calculation.

Entered CONTINUE command when not stopped at a
breakpoint.

A SUBEXIT or SUBEND statement was encountered
when no subprogram was called. For example,
CONTINUE line-number specified a line in a subprogram
after the main program stopped at a breakpoint.

Comp |l ex

-

Too many functions, operators, or levels of parentheses
pending evaluation; expression must be simplified or
performed in two or more steps in separate statements.

contents may be lost

o=

When the power was turned on, the computer
determined that the contents of memory are not the
same as when the power was turned off. However, some
system data was correct, so the loss may or may not be
serious. This message often appears when the [RESET]
key is pressed while the power is on.

DATA error

-

| 2

Out of data in the current program or subprograrn.
Improper data list in a DATA statement. For example,
items not separated by cominas.

During an attempt to read a numeric item, the data read
was not a valid representation of a numeric constant.

Appendices

Messages Listed
Alphabetically
(Continued)

Division by zero

-

Evaluation of a numeric expression includes division by
zero: result is replaced by 9.9999999999599E + 127 with
the appropriate algebraic sign.

Extension

o=

Attempted to execute an extended BASIC statement or
function without the extension in the system.

May also occur when the contents of memory have been
improperly modified (see System error).

1 le error

File-number specified in an OPEN statement refersto a
file already opened.

File-number in an input/output statement, other than
OPEN, did not refer to an open file.

File-number or device-rnumber in an Input/output
statement was greater than 255.

Attempted to INPUT or LINPUT from a file opened in
OUTPUT or APPEND mode.

Attempted to LINPUT from an internal-type file.
Attempted to PRINT to a file opened in INPUT mode.
Used REC clause in an input/output statement that
accessed a sequential file.

Missing period or comma after device number in device
or filename specification.

Appendices A-19

Appendix D: Error Messages (Continued)

Messages Listed FOR/NEXT error
Aiphabetically » More FOR statements than NEXT statementsin a

{Continued) program or subprogram. Note: The line number reported

Messages Listed 1/0 error
Alphabetically » An error was returned by a peripheral device during an
{Continued) input/output (I/0) statement or command, or while using

o
| 3

is the last line of the current program or subprogram, not
the line containing the unmatched FOR statement.

More NEXT statements than FOR statements in a
program or subprogram.

Control-variable in NEXT statement did not match
control-variable in corresponding FOR statement.
Executed a NEXT statement without previcusly
executing the corresponding FOR statement.

Too many levels of nested FOR NEXT loops.

Same control variable used in nested FOR NEXT loops.

IMAGE error

i~
-

-

Nul string provided as image string.

Numeric format field specified more than 14 significant
Print-list included a print-item but image string had only
literal characters.

the EOF function. A special I/O code is returned by the
device and is displayed after the message. Common /O
error codes are described in the /O ERROR CODES
section of this appendix. I/O error codes for the cassette
recorder are listed later in this appendix.

The error code is followed by the file-number or the
device-number, whichever is appropriate to the
statement or command being executed. A number sign
indicates a file-number and quotation marks indicate a
device-number. Both the common codes and other
device-dependent /O error codes are described in the
peripheral manuals.

in use

-

Called an active subprogram; subprograms may not call
themselves, directly or indirectly.

initial ized

.

[

Displayed when circumstances force the complete

initialization of the system. The system is initialized

when the power is turned on and the computer

determines that:

- the contents of memory have been destroyed (may
" occur after changing the batteries).

— expansion RAM previously appended through the
ADDMEM subprogram is no longer in the system.
May also appear when the [RESET] key is pressed (much

of the same memory checking is performed).

Line number error

-

Could not find a line number specified in BREAK,
CONTINUE, DELETE, GOSUB, GOTO, ON ERROR,
USING, RESTORE, RUN, or BREAK.

RENUMBER could not find a referenced line. The
command replaced the reference by 32767, which 1s not
a valid ine number.

BASIC statement referred to a ine number that was
lower than the first {or higher than the last) line number
of the current program or subprogram.

Line number specified in a statement or command was
less than 1 or greater than 32766.

RENUMBER command generated a line number greater
than 32766.

A-20 Appendices

Appendices A2

Appendix D: Error Messages (Continued)

Messages Listed
Alphabetically >
{Continued) >

Y

-
|

Memory full

Insufficient space to add, insert, or edit a program line.

Insufficient space to allocate variables for a program or
subprogram.

Insufficient memory to allocate space for a string value.
Insufficient space te load a program or subprogram into
memaory.

Insufficient space to OPEN a {ile or device.

Insufficient space to assign a user-assigned string.

Mismatch

|

Used a string argument where a numeric argument was
expected or a numeric argument where a string
argument was expected.

Assigned a string value to a numeric variable or a
numeric value to string variable.

A numeric variable or expression was provided as a
prompt in an INPUT or LINPUT statement.

Missing statement

o=

-

-

=

An error-processing subroutine terminated with a
SUBEXIT or SUBEND statement instead of a RETURN
statement.

SUBEND missing in a subprogram.

Encountered a SUB statement within a subprogram; a
subprogram cannot contain another subprogram.
Executed a RETURN statement without previously
executing the corresponding (GO5UB statement.

A-22 Appendices

Al ey ¢ AL == — T @
L L -

Messages Listed
Alphabetically
(Continued)

Name table full
» Defined more than 95 variable names.

No RAM

» (Called ADDMEM subprogram with no cartridge installed
or with a cartridge that had no available RAM.

» (Called PUT or GET with no cartridge installed or with a
cartridge that has no RAM.

Not defined

» Atternpted to perform a calculation with a varable that
has not been defined.
» Encountered an undefined variable in a program or

subprogram. This error can occur when CONTINUE line-

number specifies a line that is not in the same program
or subprogram where the breakpoint occurred.

Not found
» RUN statement did not find the specified program.
» CALL statement did not find the specified subprogram.

Overf | ow

» A numeric value was entered or 4 numeric expression
was evaluated that resulted in 2 number whose absolute
value was greater than 9.999999G999999E + 127; the
value is replaced by 9.9999999999999E + 127 with the

appropriate algebraic sign.

Parenthesis

» A statement or expression did not contain the same
number of left and right parentheses.

» Left and right parentheses in a statement or expression
did not match up. For example, SIN(1 +)PL/2X where
SIN(1 +(P1/2)) was intended.

Appendices A-23

Appendix D: Error Messages (Continued)

e R — T T, M e fed Tmmmats TR S Wt SRR S mr = e
J—_ e - TR P . - M

Messages Listed Previousiy defined Messages Listed Syntax (Continued)

: = i ly placed keyword. For example:
Alphabeticall » Variable in a DIM statement ared sly in th _ Alphabetically > Improperly ; .
(Czntinued) ' current program EISI‘ Subpmgl‘zlrﬁe proviowsy e . (Continued) ~ DIM or SUBEND is used after a DIM statement in a

: . multiple statement line

» Variable referenced using the wrong number of U . .

. . ' . : — tatem begins with a non-statement keyword
dimensions. For example, a variable was first used as a a statement

.) : h as TO, ERROR, VARIABLE, SIZE
simple variable and later used as an array in the same Suct ’ e :
prograrm or subprograin. — a misspelled variable results in a keyword or a

misspelled keyword in a variable
_ akeyword is used as a variable, such as ON VAL
GOTO or IF STOP=1 THEN
» Missing keyword. For example:
~ no TO after FOR
- no THEN after IF
_ no GOTO or GOSUB after ON numeric-expresston
_ no STOP, NEXT, or ERROR after ON BREAK
- no PRINT, NEXT, or ERROR after ON WARNING
» SUB statement used after the first statement in a
multiple statement line.
» Statement other than REM, !, END, or SUB used after a

Protection error

= Attempted to insert, delete, or edit a line with a
protected program in memory.

» Attempted to LIST, SAVE, NUMBER, or RENUMBER a
protected program.

Stack underf|ow

» Attempted te remove a value from the execution control
stack when it was empty. This error only occurs when
the contents of memory have been improperly modified
(see System error).

SUBEND statement. '
Syntax » Missing or invalid filename in OLD, SAVE, VERIFY. or
58] : DELETE file command.
» Missing parentheses or quotation mark(s). : S tatement. For
» Missing statement separator (:} or tail remark symbol {!}. > ED;JHP;E;?;EG option in input/output statement. I'¢
" L o oxe mmrnaj_(s). ror examp!e: _ more than one AT, SIZE, ERASE ALL is in ACUE PT
— between arguments in argument-list o DISPLAY r

— between line numbers in line-number-list

— between variables in variable-list

— after file-nuwmber In input/output statements
Missing hyphen in line sequence.

‘ ' TLYAIOD L) » Missi ment or clause. For example:
» Invalid character in statement. For example %", ©*?"", Missing argu p

AU : ithi - - _ o limit value after TO or increment value after STEP
'm:a;"l I[M:A{?]:ﬁ (?: %ﬁaﬁi:aatléi{égty within quoted strings or -_ — 1o line number or statemt_—:-nt after THEN or ELSE
' - 3 ' — no string-constant following IMAGE
_ no line-nwmber or string-expression after USING
_ no value before or no value after a binary operator
suchas®*,/,~,or&
— no input variable following INPUT, LINPUT,
ACCEPT, or READ

_ more than one string expression is 1n VALIDATE |
— more than one open-mode, file-type, file-orgarni2ation
is in OPEN

¥

» [nvalid character within a numeric constant.

- A-25
A-24 Appendices : Appendices

Appendix D: Error Messages (Continued)
M

M:

Messages Listed

Alphabetically

{Continued)

A 206

Syntax {Continued)
» Invalid argument or clause. For example:

— astring variable is used as control-variable in FOR

— anumeric variable is used as input variable in
LINPUT .

— VALIDATE or NULL is used in a DISPLAY statement

— USING or TAB is used with an internal-type file

— the size of print item exceeds record size for an
internal-type file

= ACCEPT, CALL with BASIC-language subprograms,

GOSUB, GOTO, INPUT, LINPUT, ON ERROR line-
number, ON GOSUB, ON GOTQ, READ, RESTORE line-
number, SUB, SUBEXIT, and SUBEND statements can
be executed only in a program.

SUBEXIT or SUBEND statement encountered in a main
program.

Used CALL ADDMEM, CONTINUE, DELETE line-

group, LIST, NEW, NUMBER, OLD, RENUMBER, SAVE,
or VERIFY in a program.

System error
» This error generally occurs when the contents of

memory have been lost or improperly modified. For
example, memory may be modified by a loss of power.

Too long

=

The internal representation of a program line or
immediate statement(s) was too long.

The LIST representation of a program line exceeded 80
characters.

More than 15 characters in a variable or subprogram
name.

Truncation
» String operation (concatenation or RPT$) resulted in a

string with more than 255 characters; the extra
characters are discarded. -

Appendices

——ra e -l -

Error Codes
Listed in
Ascending Order

Code Message

EO0 or WQ | /O error

El or Wl Syntax

E2 Comp | ex

E3 or W3 Mismatch

E4 or W4 Bad value

EH Stack underflow
E6 FOR/NEXT error

E7 or W7 Bad data

E8 Bad dimension

EG9 Previously defined
E10 Can't do that

Ell Line number error
E12 Missing statement
El3 Not found

El4 Bad program type
E1l5 Protection error
El6 in use

El17 or W17 Not defined

E18 Image error

E19 File error

E20 Name table full
E21 or W21 Parenthesis

E22 Too long

E23 or W23 Bad argument

E24 Extension missing
W2abh Qverf | ow

W26 Division by zero
W27 contents may be lost
W2Zi Truncation

W29 Break

W30 lnitialized

E31 No RAM

E32 DATA error

E126 System error
E127 Memory full

Appendices

A-27

Appendix D: Error Messages (Continued)

IO Ermror Codes The following list details the standard input/output (I/O)
error codes. Some peripherals may have additional error
codes; if so, they are explained in the peripheral manual.
/O errors are displayed in one of the following forms.

» | /0 error ccc Hfff
» /0 error ccc *ddd”
where ccc is the I/O error code listed below or in the
peripheral manual, ff f is the file number assigned in an
OPEN statement, and ddd is the device number associated
with the peripheral device.
Code Definition
1 DEVICE/FILE OPTIONS ERROR
* Incorrect or invalid option specified in
» Filename too long or missing in
2 ERROR IN ATTRIBUTES
» In an OPEN statement, incorrect attributes (file-
type, file-organization, open-mode, record-
length) were specified for an existing file.
3 FILE NOT FOUND
» The file specified in one of the following
operations does not exist.
— OPEN statement using the INPUT attribute
— OLD “*device. filename"
- RUN “‘device. filename’’
— DELETE “device. filename’
4 DEVICE/FILE NOT OPEN
» Attempted to access a closed file with a INPUT,
LINPUT, PRINT, or CLOSE operation.
» File specified in EOF function is closed.
A-28 Appendices

L S R p—_ g T P B L TR ST T TR N BT R] .- - - e

I/Q Error Codes
{Continued)

Code

Definition

D

DEVICE/FILE ALREADY OPEN

» Attempted to OPEN or DELETE an open file.

» Attempted to FORMAT storage medium on a
device that has a file open.

DEV ICE ERROR

» A failure has occurred in the peripheral. This
error can occur when directory information on a
medium was lost, the peripheral detected a
transmission error or a medium failure, ete.

END OF FiLE
» Attempted to read past the end of the file.

DATA/FILE TOO LONG

= Attempted to output a record that was longer
than the capacity of the device.

» A file exceeded the maximum file length for a
device.

WRITE PROTECT ERROR
= Attempted to FORMAT a write-protected storage
medium.

- Attempted to OPEN a write-protected file in

OUTPUT or UPDATE mode.
» Attempted to DELETE a file from a write-
protected medium.

10

NOT REQUESTING SERVICE

» Response to a service request poll when the
specified device did not request service. {This
code is used in special applications and should
not be encountered during normal execution of
BASIC programs.)

11

DIRECTORY FULL
» Attempted to OPEN a new file on a device whose
directory 1s full.

Appendices A4

30

Appendix D: Error Messages (Continued)

I/Q Error Codes
{Continued)

Appendices

Code Definition

12

BUFFER SiZE ERROR

» When an existing file was opened for input or
update, the specified record length (VARIABLE
XXX) was less than the length of the largest
record In the existing file,

» The VERIFY command found the program in
memory was smaller than the program on the
storage medium..

13

UNSUPPORTED COMMAND
» Attempted an operation not supported by the
peripheral.

14

bEVICEKFILE NOT OPENED FOR OUTPUT
» Attempted to write to a file or device opened for
input.

15

DEVICE/FILE NOT OPENED FOR INPUT
= Attempted to read from a file or device opened
for output or append.

16

CHECKSUM ERROR
» The checksum calculated on the input record
was Incoirect.

17

RELATIVE FILES NOT SUPPORTED

» Device specified i1n OPEN does not support
relative record file organization.

19

APPEND MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support append mode.

20

OUTPUT MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support output mode.

[8
.*
[:
!
i.

IO Emor Codes
(Continued)

Code

Definition

21

INPUT MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support. input mode.

22

UPDATE MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support update mode.

23

FILE TYPE ERROR

» File type specified in OPEN statement is not
supported by the specified device.

» File type specified in OPEN statement does not
match file type of existing file or device.

24

VERIFY ERROR

» Program or data in memory does not match

specified program or storage medium.

20

LOW BATTERIES IN PERIPHERAL
» Attempted an /O operation with a device whose

batteries are low.

26

UNINITIALIZED MEDIUM

» Attempted to open a file on urunitialized storage
medium.

» Attempted to open a file on storage medium that
has been accidentally erased or destroyed.

32

MEDIUM FULL
» No gvailable space on storage mediumn.

39

CONTROL LINES HELD LOW
» A device connected to the I/O bus is interfering
with communication.

20D

TIME-OUT ERROR
» Lost communication with the specified device.
» Specified device is not connected to the I/O bus.

Appendices A-31

Appendix E: Numeric Accuracy

ﬁ

Calculation
Accuracy

A-32

The T1-74, like all computers, operates under a fixed set of rules
within preset limits. The mathematical tolerance of the computer
is controlled by the number of digits it uses for calculations.

)
¢

The TI-74 uses a minimum of 13 digits to perform
calculations. The results are rounded to 10 digits when
displayed in the default display format. The computer’s 5/4
rounding technique adds 1 to the least significant digit of
the display if the next nondisplayed digit is five or more. If
this digit is less than five, no rounding occurs. Without these
extra digits, inaccurate results such as the following would
frequently be displayed.

1/3 x 3 = .9899998999

This result occurs because 1/3 is maintained as .33333333:3:3
in the finite internal representation of a number. However,
when 1/3 x 3 is rounded to 10 digits, the answer 1 . is
displayed.

The more complex mathematical functions are calculated
using iterative and polynomial methods. The cumulative
rounding error is usually kept beyond the tenth digit so that
displayed values are accurate. Normally there is no need to
consider the undisplayed digits. However, certain
calculations may cause the unexpected appearance of thesc
extra digits as shown below.

2/3_ 66666666666667 and 1/3=.33333333333333
92/3 - 1/3 - 1/3 = .00000000000001 (displayed 1.E-14)

Such possible discrepancies in the least significant digits of a
calculated result are important when testing if a calculated
result is equal to another value. In testing for equality,
precautions should be taken to prevent improper
evaluation.

Appendices

-

= e oy | eyl o e sy ey i g— s rmemr R E L L R

%

= A

Numeric
Comparisons

Extremely Small
Values

Internal Numeric
Representation

A useful technique is to test whether two values are
sufficiently close together rather than absolutely equal as
shown below.

Instead of
IF X=Y THEN ...

use
IF ABS(X—Y) < 1E—11 THEN ...

When working with values very close to zero, you may get
unexpected results because any number whose absolute
value is less than 1 x 10 " becornes zero.

Instead of
SQR(RE-70~2+4E - 70 2)

L1se
(1E-70*SQR(3"2+4"2)

The TI-74 uses radix-100 format for internal calculations.
Radix-100 makes possible the extensive numeric range of

— 0 9999999999999E + 127 through - 1.E - 128; zero: and
then + 1.E— 128 through +9.9999999999999E + 127.

Another benefit of this technique is 13, and sometimes 14,
digits of internal precision.

Appendices

A 33

Appendix F: Differences Between TI-74 BASIC and Others
T

This section is for programmers who have learmed BASIC on
another computer before using a TI-74. The lists below highlight

features of TI-74 BASIC that may differ from the BASIC on an
éarller machine.

3 _ — _—
_— —
Commandsand You can use DISPLAY, as well as PRINT, to place i Program Lines The TI-74 pmte};}cisE%ngrf;nEﬁ%esﬂféﬂﬁl ;{fﬂéiﬁﬂﬁéiﬁftﬁ
Statements information in the display. You usually need to include a] requiring the D 0 ENTER] does not delete the line.
PAUSE statement after a DISPLAY or PRINT statement so : line number and pressing '

) : : . |
you can view the displayed information. | Extra spaces are automatically deleted when you snter a N
:) . am memory and preven
If you want a program to stop so you can check its progress ': program line. Thl? Emlsﬂewes Eggent.

and then resume execution, you should set a breakpoint. the indentation of a program

Refer to page 2-16. _ You can use the NUM command to automatically generate
Five instructions of TI-74 BASIC are available in .- line nUMbErs as you type a Prograih.

abbreviated form. A shorteut to listing a specific program line is the lire-

CONTINUE CON } number 141 key sequence.
| IEEI\LFIEBrII;JER g{ﬂ]{’:& | Variables All characters in a variable name are significant. Refer to
| REM ! ' page 1-4 for the rules of variable names.

RENUMBER REN | A maximum of 95 variables can be assigned values
The format string for a PRINT USING statement can be '53 concurrently.

placed on a separate line. Refer to page 2-47. The variables of a subprogram are separate from the

-' * ’ even though they may have
The TI-74 has extra functions that ehable you to calculate variables of t.hE meu-n pm%r;}n to the page 2-121.
hyperbolic functions and their inverses. 4 the same variable name. heter

; : - | iables are full precision floating point. No
You can include a quotati K within a string by typi All numeric vana) ision.
t‘gﬂ Cﬂnsléfllti‘-’e qggtatinglrlnrﬂs. quri‘e]:ltu s;)ﬂge 1—}*;; YPIE 9 variables are designated for integer or double precision

You can perform immediate calculations without using
PRINT. Examples are shown in the 77~ 74 User’s Guide on
page 3-14.

. R T TR P T T o 1P
e e R S A
. PR -'r': =

| Appendices A-35
A-34 Appendices -

Appendix F: Differences Between TI-74 BASIC and Others (cont)

“

Alrays

A-36

Appendices

The TI-74 automatically defines all arrays as beginning with
subscript 0.

_If you enter a positive non-integer subscript, the subscript is
Interpreted as the integer nearest its value.

[n one DIM sifatement, you can dimension several arrays.
However, a line can contain only one DIM statement.

.If you include a DIM statement in a multiple-statement line,
1t must be the last statement in the line.

The TI-74 automatically defines a default array if you use
an array variable without first dimensioning the array. The
def aul’F array has 11 elements (numbered 0 through 10) for
each dimension that you specified in the variable.

i TR = o= - e B s Sy .= . R RH
. -_-'E':I:--:":‘_.-ﬁ' g =L T AL LT |_.- L h "
. A A = T g L Ty T e T ..
Bl L oh

Appendix G: Index

e S

Use this list of items to find a topic of reference. Also see the

Index of the T1-74 User’s Guide.

A

Absolute value, 2+3

ABS function, 2-3

ACCEPT, 2-4

Accuracy, A-32

ACOS function, 2-8

ACOSH function, 2-9
ADDMEM, 2-10

Algebraic hierarchy, 1-6, A-15
Alphabetically arranged keywords, 2+ 3
AND, 1-13; A-11
Antilogarithm, 236
APPEND, 2-83

Arccosine, 2-8

Arcsine, 2-12

Arctangent, 2-14
Argument, subprograms, 2-17, 2121
Arithmetic calculations, 1-6
Arrays, 1-11

ASC function, 2-11

ASCII character codes, A-4
ASIN function, 2+12

ASINH function, 2-13
Assigning values, 1-4
Assignment statement, 263
Asterisks, 2+48

AT, 2-5,2-30

ATANH function, 2-14
ATN function, 2-15
Attributes, 283

Available memory, 2-40

B
BASIC,
differences of, A-34
functions, 1-7, 110
keywords, 2-3
Binary notation, A-11
BREAK, 2-16
Breakpoints, 2+ 16

C
Calculation accuracy, A-32
CALL, 1-15,2-17

ADDMEM, 2-10

ERR, 2-35

GET, 2-41

IO, 2-59

KEY, 2-60

PUT, 2-98
Cartridge memory, 3-23
Cassette prompts, 3-5
Cassette recorder

connections, 3-4

settings, 3:6,3-9
Character set, A-4
Checking a recorder, 3+6
CHRS$ function, 2-18
Clearing memory, 2-64
CLOSE, 2-19
Commands, A2
Common logarithm, 2-68
Comparisons, 1+12
Concatenation, 1-9
Conditions, 1-12
Connecting a recorder, 3+4
Constants, 1-9
CONTINUE, 2-20
Copy program memory, 2- 98
COS function, 2+21
COSH function, 2-22
Cosine, 2+21

D

DATA, 2-23

Data files, 118, 13+ 16
Data format, 2-47
Data-type, 2+82
Debugging, 116
Decimal field, 2-48
DEG, 2:25

Degrees, 2+25

Appendices A-37

Appendix G: Index

.M

du e

O (Continued)

DELETE, 226

Differences of BASIC, A-34
Difficulties, recorder, 3-18
DIM, 2.28

Dimensions, 111
DISPLAY, 230
Display-type data, 2-82
Displaying information, 1-5
Duplicating a line, 1-2

E

END, 2233

Entries, 1-4

EQOF, 2-34

ERASE AlLL, 2-5

Erase field, 24

ERR, 2-35

Error handling, 1:16

Error messages, A-16

Error subroutine, 235

Evaluation order, 1-6, A-15

Exclamation point, 1-3

Execution sequence
control, 1-14

EXP function, 2-36

Expanding memory, 2-10

Exponentiation symbol, 1-6

Expressions, 16

External devices, 2+82

F
Fields, 2-48
Fie, 1+18
cassette, 3-16
names, 1-18
number, 282
organization, 2. 83
FORTO STEP, 2-37
FORMAT, 2-39
Format Conventions, 2-2

A.38 Appendices

F (Continued)
Formatting, 1-5
FRE function, 2-40
Functions, 1-7, 1+10

G

GET, 2-41
GOSUB, 2-42
GOTO, 2-43
GRAD, 2-44

H
Hierarchy, 1-6, A-15
Hyperbolic functions, 1-7

|

IF THEN ELSE, 2-45

IMAGE, 2-47

Increment, 2-37

Initialization, A -20

INPUT (with files), 2:55
(with keyboard), 2-52

INT function, 2-58

INTERNAL, 2-83

/O error code, A+28

10 subprogram, 2-59

Integer field, 2-48
function (INT), 2-58

Internal-type files, 2-83

K

KEY, 260

KEY$ function, 2-61

Key codes, A-4

Keywords, alphabetically, 2.3

L ;
LEN function, 2-62
LET, 2-63

Line number error, A-21
Line numbering, 1-2

AR L - ——

L) - - - = - . 1 . Ll e] o, o .
— el 3% e - T Tey o o - - L — .
.-'l-'l'!'-&-.. gt 4 Al i e R
L . HiRe AR R |] Ly Sl i T et _ ad, T I

—_—_r— —
) " . . g e
. (- .

L (Continued)
LINPUT, 2-64

LIST, 2-66

Literal field, 2-48

LN, 2-67

LOG, 2-68
Logarithm, 2-67, 2-68

Logical operators, 1-13, A-11

Loop, 1-14

M

Mathematical functions, 1-7
Memory management, 1-3
Multiple statements, 1-2

N
Natural logarithm, 267
Negative values, 1-6
Nested loop, 2-37
NEW, 2-69
NEXT, 2-70
NOT, 113, A-11
NULL, 2-6
Null string, 1-9
NUMBER, 2-71
Number sign, 2-47
NUMERIC, 2-72
Numeric
data-type, 2-6
operations, 1-6
variable, 1-4

O

OLD, 2-73, 3-14

ON BREAK, 2-74
ON ERROR, 2-76
ON GOSUB, 2-78
ON GOTO, 2-79

ON WARNING, 2-80
OPEN, 2-82
Open-mode, 2-83

O (Continued) 4]
Operators |
numeric, 1-6
logical, 1-13, A-11
relational, 1-12
string, 1+9
OR, A-11
Order of execution, 1-14
{rder of operations, 1:6, A-15
Output, 1-5
OUTPUT mode, 2:83

P
Parentheses, 1-6
PAUSE, 2-8b
Pending print, 2-90
Peripherals, 1-17, 3-1
PI function, 2-87
Playback, A-16
POS function, 2-88
Positive values, 1-6
PRINT (with files), 2-93
PRINT (with display), 289
Print separators, 290
Print-list, 2-89
Printer, 1-19, 3-19
Program
execution, 2-111
lines, 1-2
storage, 1-17
termination, 2-33
Prompts, 15
PROTECTED, 2-113
PUT, 2-98

R

RAD, 2-99

Radians, 2-99

Radix-100, A-33

RAM, 2-10

Random access files, 2-83

Appendices A-39

Appendix G: Index

o

R {Continued)
Random number, 2-109
RANDOMIZE, 2-100
READ, 2-101
REC, 2-55
Record length, 2-83
Recorder, cassette

connections, 3+4

settings, 36, 3-9
Reference, arguments, 2122
Relational operators, 1-12
RELATIVE file, 2:83
REM, 2.102
Remarks, 1-3
RENUMBER, 2-103
Reservéd word list, A2
RESTORE, 2-104
Retrieving programs, 1-17, 3-14
RETURN with GOSUB, 2- 106
RETURN with ON ERROR, 2-107
RND function, 2-109
RPT$ function, 2-110
RUN, 2-111,3-15

S

SAVE, 2-113,3-12
Scientific notation, A-33
SEGS, 2-114

Separators, 2-90
Sequential access files, 2+83
SGN, 2:115
[SHIFT][PBl key, A-16
Sign, 1-6

Signum function, 2-115
SIN function, 2-116
SINH function, 2-117
Sine, 2-116

SIZE, 2-5, 2-31

SQR, 2-118

Square root, 2:118
STEP, 2-37

A-40 Appendices

S (Continued)

S5TOP, 2-119

Storing programs, 117, 3-14

String constant, 1-9
field, 2-49
functions, 1:10
variable, 1-4

STR$ function, 2-12()

SUB, 2-121

SUBEND, 2-124

SUBEXIT, 2-125

Subprograms, 115, A+3

Subroutines, 1+15

Subscript, 111

T
TAB function, 2+ 126

Tail remark symbol (1), 13
TAN function, 2-128

TANH function, 2-129
Tangent, 2- 128

Tape position, 3- 10
Transfer control, 1-14
Trig functions, 1-7

U

UNBREAK, 2- 130

Up arrow key [1], A-16
UPDATE mode, 2-83
USING, 2- 131

Vv

VAL function, 2+132
VALIDATE 2-6
VARIABLE, 2-83
Variables, 1-4
VERIFY, 2-133, 3-13

W-X
Warning, 2«80
XOR, 1-13, A-11

—_————— - -

e

—_——_— e - —

Important
Notice

Texas Instruments makes no warranty, either expressed or
implied, including but not limited to any implied warranties
of merchantability and fitness for a particular purpose,
regarding these programs or book matenals or any programs
derived therefrom and makes such materials available

solely on an “‘as-is’" basis.

In no event shall Texas Instruments be hiable to anyone for
special, collateral, incidental, or consequential damages in
connhection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability to Texas
[nstruments, regardless of the form of action, shall not
exceed the purchase price of this calculator. Moreover,
Texas Instruments shall not be liable for any claim of any
kind whatsoever against the user of these programs or book

materials by any other party.

. .:l . E:-.'-_ﬁ;:-.: -

aanwady L

